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An unsteady quasi-one-dimensional flow solver for simulating internal ballistics and axial acoustic fluctuations in

solid rocket motors is presented in this paper. Higher-order numerical solutions of quasi-one-dimensional governing

equations are prone to numerical oscillations due to the nonconservative form of the governing equations and the

nonsmooth axial variations of the cross-sectional area. Adding artificial dissipation to a central scheme is found to be

inadequate for suppression of such oscillations, and so a simple low dissipation shock-capturing scheme (named

SLAU2) is used instead. The inherent numerical dissipation of this scheme is helpful in the proper capturing of steep-

fronted acoustic waves (that develop at the onset of triggered instabilities) without undesirable numerical damping of

the acoustic waves. Using the new solver, a procedure for computing characteristic frequencies, correspondingmode

shapes, and damping rates is proposed and validated for a motor with a cylindrical grain geometry. The quasi-one-

dimensional formulation can accommodate either slip or nonslip boundary conditions for axial velocity at grain

boundaries and predict damping rates accordingly. The difference in decay rates obtained with these two boundary

conditions is shown to be the flow turning contribution.

Nomenclature

A = cross-sectional area, m2

Cp = specific heat at constant pressure, J∕kg∕K
c = speed of sound, m∕s
D2 = artificial diffusivity, m∕s
dh = hydraulic diameter, m
et = specific total internal energy, J∕kg
ht = specific enthalpy, J∕kg
K = specific kinetic energy, m2∕s2
L = length of the combustion chamber, m
M = Mach number
_m = mass flow rate, kg∕s
PA = perimeter per unit area, 1∕m
p = pressure, Pa
p 0 = pressure fluctuation, Pa
R = port radius, m
rb = burn rate, m∕s
Tf = flame temperature, K
t = time, s
u = axial velocity, m∕s
u 0 = axial velocity fluctuation, m∕s
V inj = normal injection velocity at the grain boundaries, m∕s
x = axial coordinate, m
α = damping rate, 1∕s
γ = ratio of specific heats
ρ = gas density, m3

ρs = propellant density, m3

ω = frequency, 1∕s

I. Introduction

F LOWS in most solid rocket motors operating as required are
sufficiently one-dimensional that quasi-one-dimensional mod-

els yield acceptable ballistic predictions. Although some
multidimensional effects like those associated with submerged
nozzles, slag accumulation, and vortex shedding do require
multidimensional modeling, others like boundary-layer and nozzle
erosion losses can be dealt within one-dimensional models with
empirical correlations [1]. Based on many experiments with solid
rocketmotors, Blomshield [2] stated that energetic radialmodeswere
very rare in solidmotors, whereas tangentialmodesmay appearwhen
double base propellants are used but were hardly ever seen with
metallized propellants. This is not surprising, since combustion
chambers in solid rocket motors have large length-to-diameter ratios.
One-dimensional codes can therefore be very useful for quick linear
stability assessment of solid rocket motor designs.
Most of the early ballistics codes were based on a shootingmethod

[1,3]. It involves adjusting, iteratively, the head end pressure and
integrating steady quasi-one-dimensional governing equations
spatially so that the nozzle entrance conditions correspond to a
choked flow condition for the given throat area. This method is
unsuitable for simulating transient processes like ignition and wave
propagation, not only because of its use of pseudo-steady-state and
short nozzle approximations but also its first-order spatial accuracy.
Acoustic dynamics in combustion instability studies were handled
using linearized equations for the perturbations over the mean
flowfield obtained through this shooting method. An eigen-analysis
of the linearized equations led to further simplification of the problem
through modal decomposition of the perturbations. Only a few
dominant large-scale modes could be tracked using a set of ordinary
differential equations instead of solving the partial differential
equations for wave motion. The complete eigenanalysis and
determination of all eigenmodes were computationally very
expensive. The spatial averaging technique using a Green’s function
for the linear wave equations introduced by Culick [4] provided an
efficient way of computing the dominant eigenmodes and has been
the mainstay of past stability codes. Such relatively inexpensive
linear stability analysis could be very useful in rapid evaluation and
ruling out of inherently unstable designs.
Triggered instabilities, which are mostly due to nonlinear

mechanisms, [2,5–7], cannot be predicted using a linear stability
analysis. Flandro et al. [9] noted that motors predicted to be linearly
stable using the solid rocket stability prediction (SSP) code [8] could
be pulsed into instability [9]. SSP has beenmodified over time [10] to
include some of the nonlinearities for improved stability predictions.
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Determination of a large number of modes and corresponding
frequencies to deal with steepening of the compression waves into
shocklets was computationally very expensive [4]. Computing
perturbations using higher-order finite difference or finite volume
methods instead of modal representation is always possible, but one
has to contend with the numerical problems that nonsmooth area
changes and gas dynamic discontinuities present. If they have to be
dealt with, the full solution itself can be computed instead of
perturbations over a mean [11,12].
Artificial viscosity approaches [13] used to capture shockswithout

generating numerical oscillations in solutions of Euler and Navier–
Stokes equations can also be used for solving quasi-one-dimensional
equations [14,15]. However, they do not work as well due to the
nonconservation form of the quasi-one-dimensional equations.
Problems are encountered if area changes are not smooth as shown in
this study. That is one reasonwhyBaumet al. [12,16], andLevine and
Baum [17] used a combination of three different schemes for
simulating nonlinear instabilities. Themore recent works of Loncaric
et al. [18], Montesano et al. [19], Baczynski and Greatrix [20],
Greatrix [21], and Montesano et al. [22] are based on a
nondeterministic randomchoicemethod (RCM) developed primarily
for capturing discontinuous numerical oscillation-free solutions of
hyperbolic conservation laws.
Riemann solver-based deterministic methods [23–28] extended to

higher orders using essentially nonoscillatory (ENO) [24,25,27] or
discontinuousGalerkin (DG) [26] schemes have also been developed
and reported in open literature. The Riemann solver developed by
Pekkan and Ucer [23] was used for steady-state and pulsing
simulations but only for cylindrical and end burning grains. The axial
area variation was smooth along the axis in the former and zero in the
latter. The end burning grain corresponded to an inflow boundary
condition for a cylindrical chamber. The ENOschemes of d’Agostino
and Andrenucci [24] and Ferretti [27] were shown to handle sharp
cross-sectional area changes without creating spurious oscillations.
The latter work [27] focused on modeling the vorticity–acoustics
interaction within a quasi-one-dimensional framework. Cavallini
et al. [28] also focused on this aspect using a monotone upstream-
centered scheme for conservation laws (MUSCL) approach instead
of an ENO scheme to achieve second-order spatial accuracy. The
third-order flux-splitting scheme of Willcox et al. [25] was used to
test the quasi-steady assumption (often made while making zero- or
one-dimensional ballistics predictions) and to study the effects of
erosive burning. Unphysical predictions at locations near abrupt area
changes were reported with this approach. Except for the work of
Shimada et al. [26], none of the aforementioned studies attempted
quantification of the damping mechanisms that affected the axial
acoustics. In this study, the quasi-one-dimensional results differed
significantly from predictions of linear theory and axisymmetric
simulations.
There is little doubt that the Riemman solvers used in the past

studies [23–28] could capture shocks crisply, but retaining this
feature along with an ability to deal with nonsmooth area variations,
although possible (especially with the use of ENO schemes), is yet to
be demonstrated. The Riemann solvers’ ability to capture shocks
comeswith numerical dissipation, which is undesirable for the proper
resolution of wave dynamics. The numerical dissipation of kinetic
energy in various solvers/schemes has been studied extensively, but
the numerical dissipation of acoustics has received much less
attention. Errors due to numerics including dissipation are generally
higher at small scales. The large-scale dynamics predicted by various
solvers are expected to be quite similar unless small-scale dynamics
affect the large scales. Evidence to the contrary has been presented by
Shima and Kitamura [29], who showed that numerical dissipation
levels for even large-scale acoustics could vary from one Riemann
solver to another.
Documented in this paper are efforts to develop an unsteady quasi-

one-dimensional model for ballistic and stability predictions with the
following requirements. First, the method should be deterministic
(unlike the RCM) and based on a single scheme rather than a
combination of different schemes. A MUSCL approach would be
preferable compared to an ENO scheme for the sake of simplicity.

Numerical oscillations due to nonsmooth area variations and shocks
should be minimal. Numerical damping of acoustics should be
negligible in comparison with the physical damping. To this end, two
different schemes are tested. The first is the second-order
MacCormack scheme with artificial dissipation, and the second is
the SLAU2 shock-capturing scheme. For steady-state ballistics
predictions, comparisons are made with those from a shooting
method.Unsteady capabilities are tested by simulating the collapse of
compression waves into shocklets and by predicting damping rates
associated with different physical processes in a cylindrical motor
with zero combustion response to acoustics.
Obviously, the rotational dynamics associated with vortex

shedding in segmented motors and parietal vortex shedding [30]
cannot be captured using the quasi-one-dimensional equations alone.
But, rotational terms associated with unsteady vorticity fields created
by axial pressure oscillations, even in simple geometries (like
cylindrical grains) that appear in theoretical analyses [31], call into
question the use of the quasi-one-dimensional model predictions of
damping rates and, consequently, their use for stability predictions.
The flow turning loss seems necessary in the stability theory to
explain experimental results [32], but its prediction using quasi-one-
dimensional modeling, to the authors’ knowledge, has never been
verified.

II. Governing Equations

Terms included in the quasi-one-dimensional equations used for
modeling solid rocket motors differ from one study to another
[18,23–26,33] depending on the focus. The equations used here
include only the terms that account for cross-sectional area changes in
space and time, as well as mass addition normal to the local grain
boundary at each axial location:

∂�ρA�
∂t

� ∂�ρuA�
∂x

� rbPA�ρs − ρ�A (1)

∂�ρuA�
∂t

� ∂��ρu2 � p�A�
∂x

� p
∂A
∂x

� rbPA�ρs − ρ�uA (2)

∂�ρetA�
∂t

� ∂�ρuhtA�
∂x

� rbPA�ρsCpTf − ρet�A (3)

The addition of energy (and momentum when the grain boundary
is not perpendicular to the axial flow direction) due to the flame speed
of the propellant is neglected in comparison with other terms.
The preceding set corresponds to themost conservative form of the

equations and is used in most ENO-based schemes [24,25,27]
reported in the literature. The first term on the right-hand side of
Eq. (2) makes a full conservation form impossible and poses a
problem for higher-order spatial discretization. However, this set is
referred to as the conservation form. Other schemes (RCM [18] and
DG [26]) are based on an alternate form where the effects of area
change are included using source terms to one-dimensional Euler
equations. This set is referred to as the nonconservation form.
The underlined term in Eq. (2) implies that the incoming mass at

the boundary enters the domain with the local axial velocity. This
corresponds to a slip boundary condition. Calculations without it
correspond to a no-slip boundary condition.

III. Numerical Methods

A second-order explicit Runge–Kutta scheme is used for temporal
integration. A finite volume scheme is used for spatial discretization.
The fluxes on the cell faces are computed using either aMacCormack
scheme [34] or a SLAU2 shock-capturing scheme [35].
The MacCormack scheme is implemented using the conservation

forms of the equations listed previously. The fluxes on a face, in odd-
numbered steps, are computed using cell-centered quantities to the
left in the predictor step and using cell-centered values to the right in
the corrector step. The opposite biasing sequence is followed in the
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even-numbered time steps to prevent an overall directional bias. The

details and performance of this scheme have been well documented

[34]. Artificial dissipation terms are added to overcome the sonic

glitch and suppress the numerical oscillations in the vicinity of

shocks. Artificial diffusivity D2 is proportional to both the pressure

switch (to make it nonzero only around shocks) and the speed of the

fastest wave in the system:

D2 ∼
jpi�1 − 2pi � pi−1j
pi�1 � 2pi � pi−1

ju� cj (4)

Although the scheme can capture shocks, the solutions exhibit

postshock numerical oscillations. Although never reported in the

context of quasi-one-dimensional models, they are suppressed using

fourth-order hyperdiffusion terms [13]. Artificial viscosity ap-

proaches with and without these hyperdiffusion terms are

considered here.
The simple low dissipation AUSM scheme (SLAU) developed by

Shima and Kitamura [29,36] is considered for the present work as an

alternative to the MacCormack scheme. It was designed to keep the

numerical damping of kinetic energy minimal within the flux

splitting framework, but its numerical damping of acoustics was also

shown to be much less than that of the Roe scheme [29], on which

many of the Riemann solvers in use are based. SLAU2, which is an

improved version of SLAU with a more robust shock prediction

ability [35], is considered here.
The terms on the left of the Eqs. (A1–A3) are discretized using a

finite volume version of the SLAU2 scheme, whereas those on the

right are handled as source terms. In the original SLAU2, ρA and pA
take the place of ρ and p.
The properties on left and right sides of the face are denoted using

subscriptsL andR, respectively. The pressure on the face used for the
computed flux is obtained using the following equations:

Afacepface �
ALpL � ARpR

2
� f��ML� − f−�MR�

2
�ALpL − ARpR�

� ALρL � ARρR
2

c1∕2�f��ML� � f−�MR� − 1� �
��������������������
KL � KR

p
(5)

where

f	�M� � �M	 jMj�
2M

; if jMj ≥ 1

� 1

4
�2∓M��M	 1�2; otherwise (6)

M represents the Mach number computed using the velocity

normal to the face and the interfacial speed of sound c1∕2, and K
represents the specific kinetic energy.Kitamura and Shima [35] noted

that the SLAU2 is not very sensitive to the specification of the

interfacial speed of sound, and so the geometric mean of values on

either side is used for simplicity.
The mass flux across the face is computed using following

equations:

M̂ � min

�
1;

1

c1∕2

��������������������
KL � KR

p �
(7)

χ � �1 − M̂�2 (8)

g � max�min�ML; 0�;−1�min�max�MR; 0�; 1� (9)

jVnj� � �1 − g�jVnj � gjc1∕2MLj (10)

jVnj− � �1 − g�jVnj � gjc1∕2MRj (11)

Vn � c1∕2
ρLjMLj � ρRjMRj

ρL � ρR
(12)

_m � 1

2
�ρLAL�MLc1∕2 � jVnj�� � ρRAR�MRc1∕2 − jVnj−��

−
χ

2

Δ�pA�
c1∕2

(13)

Δ�pA� represents the jump in product of pressure and the cross-
sectional area across the cell face. The velocity vector and total
specific enthalpy from the upstream side along with the mass flux (as
determined by _m) from the preceding equation are used to compute
the convective fluxes.
In the first-order version, the left and right values for a given face

correspond to the cell-centered values on either side of it. For
achieving second-order accuracy in space, the left and right values are
calculated using higher-order interpolations from cell centers using
the MUSCL approach.
Since both the MacCormack and SLAU2 schemes based on the

conservation form of the equations fail to meet the necessary
requirements (as demonstrated in later sections), the SLAU2 scheme
based on nonconservation forms of the governing equations [18] also
had to be considered. In these equations, the left side is exactly the
same as in the one-dimensional Euler equations. The terms of the left
side are discretized using a finite volumeSLAU2 schemepresented in
the literature [29,35,36]; whereas those on the right, including the
effects of area change, are treated as source terms.
The governing equations and the SLAU2 scheme to solve them are

listed in the Appendix.

IV. Results

The simulations reported in this study are for stationary grain
geometries, but the unsteady dynamics of all flow quantities are
completely time accurate. The area change with time in solid rocket
motors is generally very slow, which is why the quasi-steady-state
assumption made in many ballistics codes turns out to be reasonable.
Table 1 lists the default values of the parameters used for the

simulations. These values are typical for small rocket motors with
ammonium perchlorate/hydroxyl-terminated-polybutadiene-based
composite propellants. Unless stated otherwise, these are used in
all the simulations. Since the combustion response is not simulated,
the burn rate is held constant. The default spatial resolution is 5 mm,
and the time step is determined by assuming a Courant–Friedrichs–
Lewy (CFL) number of 0.4 (limit is 0.5 for stability of a second-order
scheme).
Four combustor geometries, shown in Fig. 1, are considered for

testing the steady-state performance of the numerical methods. There
is no propellant burning on the head end or within the nozzle. The aft-
coneand front-conegrain geometries are axisymmetric representations

Table 1 Parameters used for steady-state

simulationsa

Quantity Value

γ 1.214
ρs 1670 kg∕m3

Molecular weight 25.121 kg∕mole
Burn rate 6.96 mm∕s
Flame temperature 2980 K
Throat diameter 45.2 mm
Length of convergent section of nozzle 12 cm

aDifferent burn rate of 7.84 mm∕s is used for the cylindrical

geometry.
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of finocyl and reverse finocyl grain configurations that are oftenused to

achieve constant thrust in time. All grain geometries except the

cylindrical one have the same burning area, and therefore should result

in the same chamber pressure (when calculated using a zero-

dimensionalmodel). The cone angles used in the study are deliberately

chosen to be quite highwhen compared to values encountered in actual

rocket motors, so that the code ability in handling rapid and abrupt

cross-sectional area changes can be tested.They are usually kept low to

avoid vortex shedding and related problems.

A. Steady-State Simulations

The midcone grain geometry has all the complexities, like sharp

variations in cross-sectional area and discontinuous variations of

the source terms (i.e., mass addition stops abruptly when flow enters

the nozzle), that can pose problems for numerical modeling. It is used

to compare various techniques instead of simulating all the geo-

metries. The solution predicted using a shooting method is used

as a reference. The comparisons are made only in the combustion

chamber (0.0 m < x < 2.0 m in Fig. 1) and not in the nozzle

(x > 0.5 m in Fig. 1) for two reasons. First, the differences between

the predictions of various approaches become less evident if the

nozzle portion is included due to a steep variation of pressure there.

Second, the shooting method does not extend into the nozzle (a short

nozzle approximation is used in it).

Figure 2 shows the axial pressure profiles predicted using various

schemes. For illustrating the difference in the predictions of various

schemes, a zoomed-in view of the predictions around one of the

locations where the area changes abruptly is presented in Fig. 3. The
MacCormack scheme seems to work really well, even without any
artificial viscosity in the subsonic region. The artificial viscosity
enables it to handle supersonic flows in the nozzles. Shocks can be
captured using artificial viscosity but with undesirable postshock
numerical oscillations. Fourth-order dissipation terms are added to
suppress postshock oscillations, which arisewhen only second-order
terms are used. However, when these additional fourth-order dissi-
pation terms are added, numerical oscillations are generated at points
where area changes are not smooth.
Surprisingly, the SLAU2 scheme based on the conservation form

of the equations is quite similar. Instead of oscillations, large spikes
are generated near such locations. The SLAU2 scheme based on the
nonconservative form of the equations does not have this problem.
Overall, the MacCormack scheme with second-order artificial
dissipation and the SLAU2 based on the nonconservative form of the
equations predict similar results, which also seem acceptable when
compared with predictions of the shooting method. Though the
profiles are very similar, the predictions are shifted up when
compared to the those from the shooting method due to a mass error
of about 0.6%. This error is likely a result on the artificial viscosity in
the MacCormack, whereas in the case of SLAU2 predictions, it
results from use of a nonconservation form of the governing
equations. In the rest of this paper, SLAU2 refers to this version of the
scheme.
The predictions of the SLAU2 for the front-cone and aft-cone

geometries with corresponding predictions of the shooting method
are shown in Figs. 4 and 5, respectively. In the latter case, minor
oscillations are evident in SLAU2 predictions around the point where
the conical section begins. The two-point oscillations have an
amplitude that is 0.02% of the mean pressure. These numerical
oscillations have the highest possible wave number on a given mesh
and are unlikely to affect the large-scale acoustic modes that have the
lowest wave numbers.
For further testing, the midcone geometry in which only the

cylindrical portion close to the head end (0.0 m < x < 0.5 m in
Fig. 1) has burning propellant is considered. For such a case, themass
addition drops to zero abruptly as the area also changes in a
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Fig. 1 Internal propellant grain geometries used in the simulations.
From top to bottom, the geometries are referred to as a) cylindrical, b) aft
cone, c) front cone, and d) midcone henceforth.
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Fig. 2 Comparison of pressure profiles for the midcone grain geometry
predicted using various schemes.
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Fig. 3 Zoomed-in view of pressure profiles for the midcone grain
geometry predicted using various schemes. The legend is the same as in
Fig. 2.
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Fig. 4 Comparison of pressure profiles predicted for the front-cone
grain geometry.
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nondifferentiable manner. The results predicted for this case using
the SLAU2 and MacCormack schemes with second-order artificial
dissipation are compared in Fig. 6. In both cases, the numerical
oscillations at the corner where burning stops have amplitudes less
than 0.02% of the mean pressure.
For the cylindrical grain motor, the quasi-one-dimensional

predictions are compared to a reference solution predicted using an
axisymmetric simulation performed using FLUENT, a commercial
computational fluid dynamics software [37], instead of the ballistics
code. The axisymmetric predictions are based on a structured mesh
that is uniform in axial the direction and clustered enough near
the walls to resolve the laminar boundary layer. As seen in Fig. 7, the
overall pressure levels are about 0.3% higher, perhaps due to the
additional choking effect of the boundary layer at the throat. The code
setup for this axisymmetric case is used for unsteady validation
as well.

B. Unsteady Validation

Two kinds of problems are chosen for unsteady validation. The
unsteadiness of the mean flow in the absence of combustion
instability can be neglected given that predictions made using many

ballistics code based on a quasi-steady-state assumption turn out to be
quite reasonable after the ignition transients. For combustion
instability studies, however, temporal accuracy of the acoustic
predictions is very important. The first step in establishing a code’s
ability to model instabilities is to test its predictions of acoustic
damping terms. After doing that, the ability to capture sharp-fronted
waves at the onset of triggered instability without numerical
oscillations is verified.

1. Acoustic Damping

All acoustic damping terms for the lower axial modes, except that
associated with condensed phase particles, can be computed with
reasonable accuracy in a one-dimensional framework provided 1) the
numerical damping is negligible and 2) there is no exchange of
energy between the axial and transverse modes (i.e., there are no
mixed modes).
Shimada et al. [26] investigated the applicability of quasi-one-

dimensional approach formodeling axial acoustics and observed that
the predicted damping rates differed from those obtained using
axisymmetric simulations. Numerical damping was suggested as
a possible explanation. Energy transfer to a radial mode was also
speculated but reasoned to be unlikely.
Numerical damping notwithstanding, the one-dimensional ap-

proach is adequate for capturing losses associated with the nozzle.
These losses depend primarily on the nozzle entry Mach number.
There is no ambiguity about this quantity in quasi-one-dimensional
approaches, whereas in the case of axisymmetric simulations, it is not
clear how it should be computed. Whether the average flow velocity
is sufficient or some measure of radial nonuniformity is also
necessary is unclear. The effect of this nonuniformity might lead to
some error that has not been systematically analyzed.
In comparison with the nozzle losses, the flow turning loss has been

the subject ofmuch debate. Itwas captured inCulick’s one-dimensional
analysis [38] but wasmissing in themultidimensional formulations [8].
Flandro clarified [39] that it was due to not using the no-slip condition at
the grainboundaries.Given that Shimada et al. [26] used anEuler solver
that admitted a slip condition rather than a Navier–Stokes solver for
multidimensional simulations, the flow turning contribution should
have beenmissing. Yet, the overall losswas higher inmultidimensional
simulations than in quasi-one-dimensional simulations. The likely
explanation is numerical dampingor energy transfer to a radialmode, as
speculated by them [26].
As pointed out by Flandro [39], the flow can be injected at any

specified angle. But, how accurately the losses due to slip and nonslip
conditions turn up in quasi-one-dimensional calculations remains
unverified. There is reason to expect that some multidimensional
effects, like those due to the vorticity field, cannot be captured
accurately in a one-dimensional solver [39].With a slip boundary, the
phase of the unsteady fluctuating velocity does not vary with the
radial coordinate. This, however, is not the case in the case of viscous
calculations. The axial fluctuating pressure gradient is balanced by
the unsteady term at the centerline, whereas it is balanced by the
unsteady viscous term at the wall. On the grain boundary itself, no
slip condition is used for axial velocity, but the axial fluctuating
velocity near the wall is not in phase with the same quantity at the
centerline:

p 0 ∼ sin�ωt� cos�πx∕L� (14)

u 0
centerline ∼ cos�ωt� sin�πx∕L� (15)

u 0
nearwall ∼ sin�ωt� sin�πx∕L� (16)

This phase difference has been confirmed theoretically [31,40],
experimentally [41,42], and in the axisymmetric calculations of the
present study. The recent analytical solutions of Majdalani [43]
indicated that the shear at the wall was in phase with the pressure
gradient, as in the preceding equations, but the lag approached π∕4 at
higher frequencies. Since the focus here is on lower axial modes, this
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Fig. 5 Comparison of pressure profiles predicted for the aft-cone grain
geometry.
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phase lag could not be confirmed. The effect of this acoustic velocity
phase variation along the radial coordinate is unclear. This part of the
study seeks to address numerical damping, energy transfer to radial
modes, and boundary condition effects, all of which can affect the
accuracy of one-dimensional predictions.
A simple exercise helps in estimating the acoustic damping

associated with the numerics. The first harmonic is superimposed on
a stagnant state (under standard atmospheric conditions) in a
cylindrical chamber on a 2 m length and a 123 mm diameter (similar
to the combustion zone in the cylindrical case in Fig. 1), and the
temporal evolution is predicted using the Runge–Kutta time-
integration scheme and SLAU2 flux splitting spatial discretization
scheme over several cycles. The domain is discretized using 400
points, whichmeans that the spatial resolution is the same as that used
for rocket motor geometries. The pressure at one of the ends is shown
in Fig. 8. Also shown is a decaying sinewave fit to the prediction. The
numerical damping rate constant turns out be 0.008/s, which is
negligible compared to the characteristic frequency of about 87Hz. It
is also negligible compared to the physical rate constants resulting
from the nozzle and flow turning losses in typical rocket motors.
For the cylindrical motor geometry shown in Fig. 1, after a steady

state is reached, random velocity fluctuations are added at the head
end and pressure data at a few locations are collected over a period
of time. This simulates a speaker generating white noise. The
frequencies corresponding to eigenmodes stand out in the Fourier
transform of the pressure data. If a single point is chosen for
calculating the spectrum, an eigenmode that has a node at that
locationwill bemissed. So, spectra atmultiple points are computed in
order to avoid this possibility. The superset of all the peak locations
provides the set of eigenfrequencies. Though small deviations can
be expected due to the presence of a nozzle instead of a closed end,
the acoustics in the cylindrical chamber correspond roughly to pipe
harmonics and the nodes can easily be avoided. The spectrum
computed using pressure at x � 0.065 m (13th grid point from the
head end) for the cylindrical geometry is shown Fig. 9. There is a lot
of noise in the spectrum generated by random forcing, and so the
precisevalues of the characteristics frequencies are hard to determine.
At the lowest characteristic frequency determined from this plot, a
sinusoidal forcing is imposed on the head end and pressure data are

collected. Forcing at this frequency activates only the first mode. The

unsteady simulation can be stopped at almost any time. The spatial
variation of pressure corresponds to a steady-state profile with an

added first mode at some amplitude. With this as an initial condition,
the head end forcing is stopped and the pressure is noted as a function

of time. The pressure signal is exactly a decaying (monochromatic)
sine wave, as expected. If the frequency during decay differs

significantly from one used for forcing, the monochrome forcing and
decay steps are repeated. If the frequency specification is far from a

characteristic frequency or if the initial mode shape was incorrect,
there will be multimodal decay of the pressure disturbance, as

observed by Javed and Chakraborty [44].
The approach used here helps in two ways. For cylindrical grain

geometry, the frequency of the fundamental is computed roughly as
c∕2L, where L is the length of the chamber. It is not clear whether it

should include the length of the convergent section of the nozzle. For
the geometries simulated, the nozzle is about 12 cm, which is about

6% of the combustion chamber length. So, there is an uncertainty of
6% in estimating the frequency. For the cylindrical grain simulated,

the frequency lies between 258 Hz (computed including the conver-
gent section of the nozzle) and 273 Hz (computed by excluding the

nozzle portion). Through the exercise detailed previously, the actual
frequency for this geometry can be determined exactly.
The same procedure is applied to the axisymmetric code to

generate reference values that are used to validate the quasi-one-

dimensional predictions. As in the case of steady-state simulations, a
no-slip boundary condition is used for axial velocity. The radial

velocity at the grain boundary is fixed in space and time to simulate
combustion that is nonresponsive to acoustics. Decay rates of the first

longitudinal modes in cylindrical motors of four different internal
diameters (100, 123, 160, and 200 mm) are computed using the one-

dimensional code. For two of these configurations, decay rates are
also computed using axisymmetric simulations.
The pressure profiles predicted by one-dimensional (1-D) and

axisymmetric codes during decay of the first mode in themotorwith a
123 mm diameter are shown in Fig. 10. Decaying sine waves have

been fit to extract the decay rates. Frequency predictions differ by
about 0.12%, whereas decay rate predictions differ by about 0.67%

for this case. Similar comparative plots for the case with a 200 mm
diameter are shown in Fig. 11. The differences in frequency and

damping rates turn out to be 0.8 and 0.4%, respectively. This verifies
that there is no loss of energy to radial modes. This will likely be true

as long as the wavelength of a mode is much larger than the radial
dimension. For higher modes with shorter wavelengths, there may

indeed be a loss to radial modes, depending on the shape of the
convergent section of the nozzle.
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Fig. 8 Simulation of acoustics in closed tube to estimate numerical
damping.
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Based on Culick and Yang’s linear analysis [45] or the expressions

provided byVuillot andCasalis [46], the decay rate contributions due

to the nozzle can be computed analytically for cylindrical geometries.

The convective and radiative components are computed as follows:

αconv � 2
V inj

R
(17)

αrad � �γ − 1�V inj

R
(18)

αnoz � αconv � αrad �
�γ � 1�V inj

R
(19)

The flow turning contribution is estimated to be V inj∕R. So, the
total decay rate turns out to be �γ � 2�V inj∕R. The predictions made

by varying the inner diameter of the cylindrical portion of the

combustion chamber while keeping all other parameters the same in

the quasi-one-dimensional code are compared with this analytical

expression in Fig. 12.
If the one-dimensional code predictions are assumed to be correct

(since they compare well with those of a multidimensional code), the

analytical expression leads to an underprediction of the decay rate.

The percentage error increases as the diameter increases to about 6%

at the highest chamber diameter considered here (correspond to

length to diameter ratio of 10). As the motor diameter increases (with

throat diameter fixed), the nozzle entry Mach number decreases and

the linear approximation for the decay rate should be more valid. A

better understanding of this discrepancy can be gained if the

individual contributions can be computed separately using the one-
dimensional code.
To separate out the contribution of the flow turning loss from the

nozzle damping contribution, the aforementioned exercise was
repeated with a slight modification. The momentum and energy
equations were modified, assuming that the mass added due to
propellant burning had an axial velocity component. In the original
equation, the mass addition was in the direction normal to the flow,
and so there was no contribution to the momentum equation. The
axial component of the mass added could be specified to be either
the local instantaneous flow velocity (which corresponded to use of
the slip boundary conditions in multidimensional simulations) or the
local fluctuation (instantaneous local velocity minus the local time-
averaged velocity). Slightly different mean pressure profiles were
obtained by using the two different specifications. When the mass
added had fluctuations in phasewith those of the system, therewould
be no flow turning loss. For a motor with a 200-mm-diam cylindrical
portion, the curve fit to predicted decay of the first mode is shown in
Fig. 13; and the decay rate turns out to be 19.97/s. By subtracting this
from 28.18/s, obtained in the case with a flow turning loss, a flow
turning loss contribution of 8.21/s is estimated for this geometry. This
differs from the theoretical value of 8.26/s (V inj∕R) by about 0.6%.
The flow turning loss is captured by a quasi-one-dimensional code by
simply accounting for the no-slip condition, which implies that its
magnitude is independent of how rapidly the flow in the chamber
turns (i.e., the mean vorticity field near the wall) or on the unsteady
vorticity dynamics associated with the acoustic velocity.
Since the flow turning loss is predicted to be very close to its

theoretical values (V inj∕R), the discrepancy between the predicted
and theoretical values of the total decay rate is due to nozzle-related
losses. Reducing the length of the convergent portion of the nozzle
has a negligible effect on the total decay rate. This, once again,
confirms that there is no loss to radial modes in either axisymmetric
or quasi-one-dimensional simulations. Equation (18) is based on
admittance determined using a short nozzle approximation. Studies
have established that this approximation results in an under-
prediction. That is the likely reason why the theoretical expression
results in lower values of overall damping.
Given that the axisymmetric predictions of various damping

contributions are in line with theoretical expressions for cylindrical
grain geometries [45], there is no evidence for an additional rotational
mechanism associatedwith the unsteady vorticity field in the acoustic
boundary layer that can cancel out the flow turning loss as proposed
by Flandro and Majdalani [31].

2. Nonlinear Effects: Wave Steepening

As the amplitude of pressure disturbance grows, the nonlinear
effects become apparent. Linear analysis using superposition of
discrete modes is no longer valid. The compression waves steepen,
whereas the opposite happens with expansion waves. This leads to
creation of sawtoothlike spatial profiles of pressure that have been
observed in experiments [9]. Such behavior has been argued to give
rise to triggered instabilities and dc shifts [7,9,12].
The ability to capture the sharp-fronted waves is tested by intro-

ducing high-frequency (3600 Hz) and high-amplitude sinusoidal
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Fig. 11 Decay of first mode pressure pulse for a cylindrical grain
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forcing at the head end of the motor with cylindrical geometry after
the steady state has been reached. The high-amplitude compression
waves self-steepen to almost shocklike structures. To provide better
resolution of these structures, the grid spacing is reduced to 1 mm
from 5 mm.
The spatial pressure profiles are plotted in Fig. 14. The conser-

vative MacCormack scheme with second-order artificial dissipation
leaves behind unphysical oscillations behind sharp fronts. Baumet al.
[16] also observed such oscillations with this scheme. These are not
two-point oscillations, and so the harmonic diffusion operator cannot
get rid of them. These oscillations are usually controlled by using an
additional fourth-order artificial dissipation thatmimics a biharmonic
operator [13]. This practiceworkswell for steady-state problemswith
stationary shocks but may not work as well in cases where shocks are
moving. Another point to be noted is that it is known to work in
one-dimensional and multidimensional simulations; how well it
works for quasi-one-dimensional flows (which have nondifferen-
tiable area variations) has never been reported so far. Except for small
unphysical kinks immediately behind the shocks, the oscillations are
mostly suppressed. Baum et al. [12,16] did not try to control the
oscillations generated by the MacCormack scheme. Instead, they
moved to a completely different scheme. The same is done here
because the fourth-order dissipation leads to problems while dealing
with nonsmooth area variations (as seen in Fig. 2). The SLAU2, being
a shock-capturing scheme, captures the shocklets crisply without
generating numerical oscillations and is considerably simpler than
the combination of schemes that et al. constructed [12,16].

V. Conclusions

A quasi-one-dimensional code is developed for simulating flows
inside solid rocket motors. The numerical oscillations in its solutions
near locations where axial variations of cross-sectional area are
nonsmooth are small enough in amplitude to be of no consequence in
either ballistic or linear stability predictions. The numerical damping
of the acoustic is low enough that the linear damping rates of the
eigenmodes can be computed accurately. The shocklike structures
that form at the onset of triggered instabilities are captured without
any numerical oscillations.
The type of boundary condition for axial velocity at grain

boundaries determines the acoustic energy loss due to flow turning.
Both slip and nonslip boundary conditions can be simulated in the
quasi-one-dimensional framework. By comparing the decay rate
predictions made using the two types of boundary conditions, the
contribution of the flow turning loss can be estimated accurately. This
is despite the fact that the phase of acoustic velocity fluctuations is

known to vary along the radial direction in multidimensional
simulations and experiments.
The code is expected to be useful for both ballistic as well as

stability predictions. The effects of grain geometry on linear stability
are currently being studied and will be reported in the future. Efforts
are ongoing to couple it with a grain evolution code to track changes
in geometry with time.

Appendix: SLAU2 Scheme for Non-Conservation Forms
of Equations

The governing equations for quasi-one-dimensional flow can be
recast as one-dimensional Euler equations with the source terms to
include the effects of cross-sectional area change in addition to cross-
stream mass and heat addition at the walls:

∂ρ
∂t

� ∂ρu
∂x

� rbPA�ρs − ρ� − 1

A

�
ρ
∂A
∂t

� ρu
∂A
∂x

�
(A1)

∂�ρu�
∂t

� ∂��ρu2 � p��
∂x

� rbPA�ρs − ρ�uA −
1

A

�
ρu

∂A
∂t

� ρu2
∂A
∂x

�

(A2)

∂�ρet�
∂t

� ∂�ρuht�
∂x

� rbPA�ρsCpTf − ρet� −
1

A

�
ρet

∂A
∂t

� ρuht
∂A
∂x

�

(A3)

The terms that account for the area changes can be handled as a
source, much like other terms on the right-hand side, whereas the
SLAU2 is used to compute the convective and pressure fluxes at the
cell faces as follows [35]:

pface �
pL � pR

2
� f��ML� − f−�MR�

2
�pL − pR�

� ρL � ρR
2

c1∕2�f��ML� � f−�MR� − 1� �
��������������������
KL � KR

p
(A4)

where

f	�M� � �M	 jMj�
2M

; if jMj ≥ 1

� 1

4
�2∓M��M	 1�2; otherwise (A5)

The mass flux across the face is computed using the following
equations:

M̂ � min

�
1;

1

c1∕2

��������������������
KL � KR

p �
(A6)

χ � �1 − M̂�2 (A7)

g � max�min�ML; 0�;−1�min�max�MR; 0�; 1� (A8)

jVnj� � �1 − g�jVnj � gjc1∕2MLj (A9)

jVnj− � �1 − g�jVnj � gjc1∕2MRj (A10)

Vn � c1∕2
ρLjMLj � ρRjMRj

ρL � ρR
(A11)
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Fig. 14 Simulation of steep front pressure waves using various schemes

in the motor with cylindrical geometry.

KALYANA CHAKRAVARTHY, IYER, AND CHAKRABORTY 889

D
ow

nl
oa

de
d 

by
 D

E
FE

N
SE

 R
E

SE
A

R
C

H
 &

 D
E

V
L

O
P.

 L
A

B
. o

n 
Se

pt
em

be
r 

29
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.B
35

75
4 



�ρu�face �
1

2
�ρL�MLc1∕2 � jVnj�� � ρR�MRc1∕2 − jVnj−�� −

χ

2

Δp
c1∕2

(A12)

where �ρu�face determines the upwinding direction for computing the
convective fluxes for mass, momentum, and energy. Inclusion of
underlined term in Eq. (A2) corresponds to a slip boundary condition
while leaving it out captures the no-slip condition and the flow
turning loss.
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