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I. Introduction

N UMERICAL simulation of the flowfield of a practical
configuration poses severe difficulty due to complex grid-

generation procedures. A Cartesian grid with near-wall extruded
grids [1], chimera or overset grids [2], grid-free methods [3], and a
combination of the aforementioned methods [4] is used to solve flow
past complex configurations. The grid-free methods operate on a
distribution of points in the domain and require a set of supporting
nodes around each point to evaluate the spatial derivatives of the
governing fluid equations. The point distribution can be obtained
from structured, unstructured, Cartesian, hybrid, or overlapped
meshes, or a randomdistribution of points. In recent years, quite a few
grid-free methods were proposed in the field of compressible fluid
flow. Among them, the least-squares kinetic upwind method
developed by Deshpande et al. [5] has received much attention of
researchers and been applied to number of complex flight vehicle
configurations. Recently, the method was successfully applied to a
store separation dynamics problem using a chimera cloud of points
[6]. Batina [7] developed a gridlessmethod that used the least-squares
method with the unbiased support of points for the discretization of
spatial derivatives. Artificial viscosity is used to stabilize the
solutions and applied to inviscid and laminar flows. Lohner et al. [8]
developed a finite point method, in which an upwind scheme was
used to stabilize the solutions, and applied it to inviscid compressible
flows. In the finite point method, the direction of upwinding is based
on coefficients of the least-squares discretization, which is purely
geometric. In recent years, the grid-freemethod has been successfully
applied to simulate turbulent flow past complex flight vehicle
configurations [9,10]. These methods used either overset grids or
extruded layers of points near the wall, along with Cartesian grids in
the offbody region, to get the distribution of points; and neighbors are
obtained using search algorithms guided by grid information, which
is therefore known as the semimeshless method. Lohner et al. [8]
developed the advancing point generationmethod to generate a cloud

of points, and the neighbors of those points were obtained using a
local Delaunay triangulation. The applications, so far, are limited to
subsonic and transonic flows. In the present work, a grid-free Euler
and Navier–Stokes (GEANS) solver has been developed using a
gridless method [7] with upwind fluxes for flow stabilization, and it
has been validated for hypersonic flows at higher angles of attack.
One of the main drawbacks of the grid-free methods is the lack of
conservation. Katz and Jameson [11] enforced conservation by
modifying weights in the least-squares discretization. However, such
modified weights may become negative for certain distribution of
points that leads to nonpositive solutions. Chiu et al. [12] proposed a
method of generating meshless coefficients with conservation
constraints at the discrete level; however, thismethodwas complex to
implement for three-dimensional (3-D) problems with an anisotropic
distribution of points. In the present work, high-speed flows are
simulated without enforcing the conservation property. A detail
experimental results [13] for an all-body hypersonic aircraft is
available for comparison of aerodynamic forces and moments in
addition to local flowfields. The flowfield around the geometry is
very complex, which involves strong compressions in the windward
side and strong expansions in the leeward side, with flow separation
and vortices at a hypersonic Mach number. Furthermore, high-
aspect-ratio grid cells are required to resolve the very fine details of
the flowfield. The simulation of such flowfields requires a robust flow
solver that can handle both strong oblique shock wave and high
expansion regions, as well as be accurate enough to resolve the
boundary layer. Therefore, the aforementioned configuration is
considered for validating the grid-free Euler and Navier–Stokes
solver [14] at hypersonic speed and the results are compared with the
experimental values. The geometry considered for validations in the
present work is simpler and amenable for generation of simple
structured grids. Therefore, structured grids are generated around the
body to get a distribution of points and supporting nodes are obtained
using the structured grid adjacency relation.

II. Three-Dimensional Navier–Stokes Equations

The three-dimensional compressible full Navier–Stokes equations
can be written in Cartesian coordinate systems as
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where ρ is density; vi are the velocity components corresponding to
Cartesian coordinates xi; e is the total energy per unit mass; p is
pressure; τij is viscous stress; and qj is the heat flux. The turbulent
viscosity μT is determined using the Spalart–Allmaras one-equation
turbulence model [15].
The governing equations for compressible fluid flow consist of

spatial and temporal partial derivatives. The main difference among
various methods like finite volume, finite difference, finite element,
and grid free is the discretization of spatial derivatives. In the grid-free
method, the derivatives of fluxes at a point are discretized using the
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fluxes at its supporting nodes. Consider a domain Ω of R3 (Fig. 1).

The spatial derivatives of fluxes at point i are approximated as a

function of fluxes at its n neighbors in the cloudC�i�. The discretized
spatial derivatives at point i can be written as
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The coefficients aik, bik, and cik for edge ik are evaluated using a
weighted least-squares method as
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The preceding discretization using fluxes at neighboring points is

like central differencing; hence, it is inherently unstable. Therefore, the

upwind fluxes are evaluated at the midpoint of the edge ik (shown as a
star in Fig. 1). The left and right fluxes are evaluated using a modified

Roe scheme [16] with variables at point i and the neighboring point k,
respectively. Then, the aforementioned spatial discretization procedure

is applied using the fluxes at midpoints to evaluate the spatial

derivatives of the inviscid fluxes. This discretization procedure leads to

solutions that are first-order accurate in space, and they are not

sufficient for practical applications. The second order of accuracy is

obtained by extrapolating the primitive variables to the midpoint using

primitive variables and their derivatives at points i and k to evaluate the
left and right upwind fluxes, respectively. The Barth's MIN-MAX

limiter [17] is used to ensure monotonicity in the solution. The viscous

fluxes are evaluated at the midpoints using the average of the left and

right variables and their derivatives; then, similar to inviscid fluxes, the

viscous fluxes are discretized. The spatial derivatives of primitive

variables required for evaluation of second-order-accurate inviscid

fluxes and stress terms in viscous fluxes are also obtained using the

least-squares method with variables at points i and k. The temporal

term is approximated using a first-order forward difference, and the

discretized governing equations are solved using the lower–upper

symmetric Gauss–Seidel method. The one-equation Spalart–Allmaras

turbulence model is used for closure, and the spatial derivatives

of the turbulent variable are obtained to be similar to the mean flow

equations.

III. Validation of the Code

A code has been developed using the aforementioned formulation

and is referred to as the grid-free Euler andNavier–Stokes solver. The

GEANS solver is validated for turbulent flow past a hypersonic all-

body configuration.

The hypersonic all-body configuration is a double-wedge body

configuration with elliptical cross sections, as shown in Fig. 2. The

body has a delta planform with 75 deg sweptback leading edges. The

forebody is an elliptic cone, and the afterbody has elliptical cross

sections. The maximum cross-sectional area of the body is located at

the junction of the forebody and the afterbody, which is at two-thirds

of the body length from the nose. The reference area is the planform

area, the reference length is the body length, and themoment center is

at 0.55 of the length of the body from the nose. Two structured

algebraic grids are generated with a size of 0.2 and 1.3 million points

for the grid-dependent study. The turbulent flow simulations are

carried out using the GEANS code at a freestream Mach number of

7.4 and angles of attack of 0, 5, 10, and 15 deg. TheReynolds number

is 15 × 106, based on the length of the geometry. An isothermal wall

boundary condition is applied on the surface with a wall temperature

of 239 K so that the ratio of the wall enthalpy to the freestream

enthalpy is 0.4. The coefficient of the normal force and pitching

moments at various angles of attack are obtained on two grids, and the

results are comparedwith the experimental values [18] in Figs. 3a and

3b, respectively. The computed coefficients on the finer grid compare

well with the experimental results. The pressure distribution along

the symmetry line on thewindward and leeward surfaces at α � 0, 5,
10, and 15 deg are compared with the experimental results and are

given in Figs. 4a and 4b, respectively. The pressure on the windward

side increases, whereas the leeward-side pressure decreases with an

increase in angle of attack; and the pressure drops at the forebody and

afterbody junction. There is a good agreement with the experimental

results, but it is slightly underpredicted in the forebody pressure on

the windward side at higher angles of attack. It can also be observed

that the pressure is constant in the forebody, indicating conical flow;

and it is decreasing in the afterbodydue to a nonconical relieving effect.

The surface heat transfer distributions along the centerline atα � 0 and
15 deg are compared with the experimental results and are given in

Figs. 5a and 5b, respectively. The Stanton number of St �
q∕��ρu�∞�Ht −Hw�� is used for comparing the heat transfer rate q.
Here, �ρu�∞ is the freestreammass flow rate,Ht is the freestream total

enthalpy, and Hw is the wall enthalpy. The windward surface heat

transfer rates comparewellwith the experimental results at both angles

of attack. At α � 15 deg, there is a mismatch of heat flux in the

windward side of the forebody, which may be due to flow transition.

The grid-free code is able to predict aerodynamic forces andmoments,

pressure, and heat flux distributions accurately at very high Mach

numbers and angles of attack. This case demonstrates the robustness of

thegrid-free code to capture strong shocks andhigh expansions, aswell

as accuracy in resolving boundary layer to predict heat fluxes.

Fig. 1 Definition of supporting points. Fig. 2 All-body aircraft geometry
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IV. Conclusions

The 3-D implicit grid-free Reynolds averaged Navier–Stokes code

GEANS has been developed. The one-equation Spalart–Allmaras

turbulence model is used for turbulence closure. The code is validated

for hypersonic all-body aircraft configuration. The point distributions

are obtained using a structured grid generator. The hypersonic all-body

aircraft is simulated at aMach number of 7.4 and angles of attack up to

15 deg. Various flowfield and surface quantities, such as pressure and

heat transfer rates, comparewell with the experimental measurements;

and the aerodynamic force andmoment coefficients comparewellwith

the experimental results. Considering the complex flowfields due to

high Mach numbers and high angles of attack, the present prediction

encourages the use of a grid-free solver for hypersonic viscous flows.
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