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ABSTRACT
Quasi-one-dimensional (quasi-1D) tools developed for capturing flow and acoustic dynamics
in non-segmented solid rocket motors are evaluated using multi-dimensional computational
fluid dynamic simulations and used to characterise damping of modal perturbations. For
motors with high length-to-diameter ratios (of the order of 10), remarkably accurate estimates
of frequencies and damping rates of lower modes can be obtained using the the quasi-1D
approximation. Various grain configurations are considered to study the effect of internal
geometry on damping rates. Analysis shows that lower cross-sectional area at the nozzle entry
plane is found to increase damping rates of all the modes. The flow-turning loss for a mode
increases if the more mass addition due to combustion is added at pressure nodes. For the
fundamental mode, this loss is, therefore, maximum if burning area is maximum at the centre.
The insights from this study in addition to recommendations made by Blomshield(1) based
on combustion considerations would be very helpful in realizing rocket motors free from
combustion instability.
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1.0 INTRODUCTION
Stable combustion is a major consideration in design of solid rocket motors. Instability
results when positive feedback between acoustic waves and unsteady combustion response
overwhelms the mechanisms that damp acoustic oscillations. Ensuring linear stability is a first
step towards realizing this goal. While linear stability prediction does not guarantee stability,
linear instability prediction does guarantee instability. It turns out that motors predicted to be
linearly stable can be pulsed into instability(2). In this sense, linear instability is the worst kind
of instability. In linear analysis, various amplifying and damping mechanisms can be first
independently quantified and then brought together in an additive sense to make a stability
prediction. The present study of the damping phenomena is a step towards realizing linear
stability analysis tools for solid rocket motors.

The damping mechanisms are mostly due to fluid dynamics and, with the exception of
that, associated with condensed phase particulate matter are relatively easier to model than
combustion. The particle damping is not considered here because particles do not necessarily
damp acoustic oscillations unless they are fully inert. Adding combustible particles may not
always be a solution for suppressing instabilities(1,3,4). The particulate effects are also non-
linear and cannot be handled in the linear framework(2). Energetics and characteristic response
frequencies can also change as a result of such addition(1). Structural damping is also left out
because it is negligible in slender non-segmented motors(1).

Only axial mode fluctuations are dealt with in this work because small rocket motors are
most susceptible to them. Pure radial or mixed radial modes have negligible amplitudes
in solid rocket motors(1). Both kinds of transverse modes in small motors have very
high characteristic frequencies at which AP-based propellants, in the linear limit, respond
minimally. Axial modes are more difficult to control. Baffles have been proposed and used
successfully in large motors, but they introduce an additional complication of undesirable
vortex shedding that can feed acoustic oscillations. Helmholtz resonators have also been
proposed but are, generally, not used in real motors because of the need for additional space.
Axial modes that cause instabilities are usually the ones with low frequencies where particle
damping is not as effective(1). Changing the axial variation of cross-sectional area, therefore,
remains the only real non-propellant-based option. This has been explored in a couple of
experimental studies (e.g., Refs 5 and 6) based on motor tests. Some useful observations were
made but without sufficient explanations.

One-dimensional model1ing could be used for studying axial modes. In fact, quasi-1D
models have been developed in several past studies. Most of the work was done in two phases.
Earlier work in 1980s(7) was focussed on developing numerical methods capable of capturing
shock-like steep-fronted waves that precede non-linear instabilities (as observed clearly in
windowed motors(8)). In a series of papers, triggered instabilities were explored numerically
using ad hoc combustion models. Their use of finite difference approach was a break from the
modal representation of the spatial variations in earlier modelling studies of Culick et al(9).
Perhaps because of this, mode-wise analyses was avoided, and there was not much emphasis
on modal decay rates. The features of non-linear instabilities were reported to have been
captured qualitatively.

Much of the recent work on combustion instability using quasi-1D modelling has been done
by Greatrix et al(10-15). Earlier work based on simple combustion modelling was used to study
coupling of acoustics with structural vibrations, whereas later emphasis has shifted towards
the development of sophisticated propellant combustion models which can predict erosive
burning and unsteady response. Damping mechanisms were not sufficiently quantified. To the
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authors’ knowledge, the errors associated with the 1D simplification have not been explored
to date. That issue is also addressed here. Specifically, two different approaches for computing
decay rates of axial modes are developed and compared for accuracy with multi-dimensional
viscous simulations.

Acoustic damping is mostly due to combustion products turning towards the axial direction
and convecting through the nozzle. The nozzle damping loss with convective and radiative
components is clearly understood. Analytical expressions for the two have been derived
in case of cylindrical grain geometries, which seem reasonably accurate(16). The origin of
flow-turning loss, by comparison, has been controversial(17). Some studies(18) have argued
that it is a consequence of acoustic modes interacting with the mean vorticity field despite
the fact Culick(9) was able to account for it in a purely 1D approach. The presence of
flow-turning loss in three dimensions was questioned based on Culick’s result. Flandro et
al(19) assert that flow turning actually resulted from an irrotational term, and inclusion of
rotational dynamics created a term that cancels out the flow turning completely in a full-
length cylindrical grain. Though some previous studies were apparently in agreement with
this assertion, there is considerable evidence that cylindrical grains do have a flow-turning
loss(17,18). Recent multi-dimensional simulations(20) have also shown that total damping rate
of axial modes is nearly the same whether the boundary layer at the grain surface is set to
be laminar or fully turbulent. Since the vorticity distribution is very different in laminar and
turbulent flows, this implies that the integrated effect depends on how much the flow turns
overall and not on how the turning (i.e. vorticity) varies radially. It is not surprising that
an inviscid quasi-1D approach(21) that accounts for overall turning was able to predict the
flow-turning loss accurately for a cylindrical grain geometry in line with expression provided
from theoretical studies(18,22). This ability is tested further for non-cylindrical geometries
here.

Note that the thrust time trace is also affected by changes in cross-sectional area variation.
The focus here, however, is solely on acoustics alone. Any ideas for avoiding instabilities
resulting from this study should be accordingly constrained by ballistics requirements when
being put into practise.

The rest of this document is organised as follows. In the following sections, the
computational methods and the test geometries used for this study are described. The next
section outlines the procedures for characteristic mode shapes and frequencies for motor
geometries under the assumption of linear acoustics. The decay rates computed using various
methods are then compared, and finally a summary of present work with brief discussion of
future plans is presented.

2.0 COMPUTATIONAL TOOLS
The flow inside all rocket motors is most likely laminar at the head end. In high-length motors,
flow transitions and becomes turbulent within the motor(23). In shorter motors, the transition
might not be complete, and flow may be intermittent if it not fully turbulent. This poses a
challenge for modelling using Reynolds-Averaged Navier-Stokes (RANS)-based approaches.
The viscous and turbulent dissipation are small-scale phenomena, so their contribution to
damping of low-frequency, high-wavelength axial acoustic modes is negligible. The only
concern is regarding the flow-turning loss, which some studies(18) have claimed depends on
radial distribution of vorticity. This, however, can now be refuted using the fact that both
laminar and turbulent simulations predict almost equal damping rates(20). It should, therefore,
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be possible to capture the flow-turning loss in quasi-1D simulations as long as the source
terms to account for mass addition at grain boundaries correspond to a no-slip condition. The
flow-turning loss is associated with combustion products entering the combustion chamber in
the transverse direction and acquiring an oscillating axial velocity component(24). If the axial
velocity of the mass added is set equal to the local bulk flow axial velocity, this corresponds
to a slip condition, and no loss would be predicted(16).

2.1 Multi-dimensional flow solver

Multi-dimensional simulations for validating the quasi-1D tools are performed using Fluent,
a commercial CFD software package(25). Roe scheme with entropy fix, which is second-order
accurate both in space and time, is used for the simulations. On the propellant surface, mass
flux calculated from the burn rate is specified, while the no-slip condition is enforced on other
solid boundaries walls. Since the flow exits through a choked convergent-divergent nozzle,
supersonic outflow conditions are used at the exit. The gas coming into the domain is assumed
to be burned, and its temperature is specified to be the adiabatic flame temperature of the
propellant.

2.2 Eigen-solver

The following quasi-1D forms of continuity and momentum equations serve as starting points
for this approach.

∂ρA
∂t

+ ∂ρuA
∂x

= 0, … (1)

ρ
∂u
∂t

+ ρu
∂u
∂x

+ ∂ p
∂x

= 0 … (2)

ρ, u, p are, respectively, density, axial velocity and pressure. x and t represent axial
coordinate and time, while A is the cross-sectional area, which may vary with space and
time. For linearisation, all quantities are decomposed into mean and fluctuating components.

q = q̄ + q′ … (3)

The fluctuation component is assumed to be small and terms that are second order with
respect to fluctuating quantities are neglected (i.e. (q′)2 � q′). With this assumption, the
equations are now of the following form.

A
∂ ρ̄

∂t
+ A

∂ρ′

∂t
+ ∂ρ′ūA

∂x
+ ∂ ρ̄u′A

∂x
+ ∂ρuA

∂x
= 0, … (4)

(ρ̄ + ρ′)
∂ (ū + u′)

∂t
+ (ρ̄ + ρ′)(ū + u′)

∂ (ū + u′)
∂x

+ ∂ ( p̄ + p′)
∂x

= 0 … (5)

The equation for the fluctuating quantities are obtained by subtracting the corresponding
equations for mean quantities.
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∂ρ′

∂t
+ ū

∂ρ′

∂x
+ ρ′

A
∂ ūA
∂x

+ ρ̄
∂u′

∂x
+ u′

A
∂ ¯ρA
∂x

= 0, … (6)

ρ̄
∂u′

∂t
+ ρ′ū

∂ ū
∂x

+ ρ̄u′ ∂ ū
∂x

+ ρu
∂u′

∂x
+ ∂ p′

∂x
= 0 … (7)

Using the isentropic relation p′ = c̄2ρ′ (where c̄ is the mean speed of sound), linear
equations for density and velocity fluctuations can be derived.

∂

∂t

[
ρ′

u′

]
+

([ 1
A

∂ ūA
∂x

1
A

∂ ρ̄A
∂x

ū
ρ̄

∂ ū
∂x + 2

ρ̄
∂ c̄
∂x

∂ ū
∂x

]
+

[
ū ρ̄
c̄2

ρ̄
ū

]
D

)
︸ ︷︷ ︸

M

[
ρ′

u′

]
= 0 … (8)

D represents the spatial differentiation operator. The mean quantities for calculation of M
are provided by running steady-state calculations using ballistics code based on a shooting
method and a short nozzle approximation(26).

The head end of the combustion chamber is a perfectly reflecting boundary. The nozzle
end of the combustion chamber can also be assumed to be one(22,27) for computing eigen
mode shapes and frequencies. This is valid for the lower modes whose characteristic
wavelengths/length scales are much higher than the lateral dimension of the combustion
chamber. Higher modes can couple with lateral modes and exchange energy depending on the
nozzle shape. The frequencies and damping rates of higher axial modes may also be affected
by the nozzle shape(27,28).

With the above simplification, the boundary conditions on either ends for the above set of
equations are zero condition for velocity fluctuations and zero gradient condition for density
(and pressure in accordance with isentropic relation).

u′|x=0 = u′|x=L = ∂ρ′

∂x

∣∣∣∣
x=0

= ∂ρ′

∂x

∣∣∣∣
x=L

= 0 … (9)

After discretising D using a fourth-order compact scheme on a uniform mesh (along
axial direction) and applying the boundary conditions, the equations for density and velocity
fluctuations over the whole domain are obtained.

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0
′

v0
′

ρ1
′

v1
′

...
ρn−1

′

vn−1
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0
′

v0
′

ρ1
′

v1
′

...
ρn−1

′

vn−1
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 … (10)

This vector equation is of the form

∂S
∂t

+ MS = 0 … (11)
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The Singular Value Decomposition (SVD) of M, M = V −1�V provides the matrix of
eigen vectors, V and a diagonal matrix with eigen values as non-zero entries, �.

The equation set can now be rewritten in a canonical form.

∂q
∂t

+ �q = 0 where, q ≡ V S … (12)

� is a diagonal matrix, so each element of q can be computed independently using the
following equation.

∂qi

∂t
+ λiqi = 0 … (13)

This equation has a simple solution qi(x, t) = e−λi t. The real part of λi is the growth rate (if
−ve) or the decay rate (if +ve) of the mode, the imaginary part is the frequency (ω, actually)
and the eigen vector represents the mode shape. The ordering of modes from lower to higher
can be done by sorting the modes in the ascending order of their frequencies.

As for nozzle damping, it impacts only the real parts of the eigen values, the mode shapes
and the frequencies, especially those of lower modes are relatively unaffected. This is strictly
true under the short nozzle approximation (when quasi-steady assumption is valid), which
is generally valid. In general, however, nozzle impedance can have both real and imaginary
parts.

Admittance boundary conditions could also be applied at the nozzle end in a eigen-
solver, but that would require separate computation of the complex nozzle admittance(29),
and errors associated with uncertainty about where this boundary condition is applied have
been reported by French(27). Eigen-solvers that include the nozzle portion also have been
developed(27,28), but their results for nozzle effects, especially decay rates, differ from direct
admittance calculations using unsteady flow solvers(27,28). For these reasons, the nozzle end
is assumed to be a closed boundary in the eigen-analysis. The solutions obtained would,
therefore, correspond to an undamped system.

2.3 Quasi-1D flow solver

Quasi-1D equations in the non-conservation form i.e. 1D Euler equations with source terms
to account for cross-sectional area variations in time and space are used to develop a simple
flow solver(16). Similar forms of the equations that were used by Greatrix et al(10,12) have
based much of their work on acoustic dynamics in rocket motors on similar forms of the
governing equations. Unlike their stochastic random choice method, a deterministic simple
low-dissipation advection upwind splitting method (SLAU2)(21,30) is used here. This choice is
motivated by the fact that this scheme yields more accurate solutions for acoustics compared
to the Roe scheme, which is among the most used shock-capturing scheme in CFD. Use of a
flux-splitting scheme ensures stable solutions both in subsonic and supersonic regimes. Steep-
fronted shocklets resulting from the collapse of high-amplitude compression waves during the
onset of non-linear instabilities can also be captured(16), although the present work is mostly
confined to linear analysis. An explicit second-order Runge-Kutta scheme is used for temporal
integration, and second-order accuracy in space is achieved using the MUSCL approach.

The steady-state predictions of quasi-1D code are free of numerical oscillations and match
well with those of an in-house ballistics code based on a shooting method and short nozzle
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2.00
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Figure 1. Cylindrical geometry (all dimensions in metres).
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Figure 2. AftCone geometry (all dimensions in metres).
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Figure 3. MidCone geometry (all dimensions in metres).
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Figure 4. FrontCone geometry (all dimensions in metres).

approximation even for cases where cross-sectional area variation along the axis is not
smooth(16). This comparison is left out here for brevity.

3.0 GEOMETRIES FOR THE GRAINS AND THE TEST
CONDITIONS

Four test grain geometries shown in Figs 1-4 are analysed in this study. The first geometry
is a simple cylindrical grain geometry. This is used to validate the results against theoretical
results for mode shapes and the damping correlations. The next three geometries have an
increased port area zone at three locations, respectively: Aftcone, with the increased port
area towards the nozzle end; Midcone, where the increased port area is near the centre of
the grain; and Frontcone, where the increased port area is at the head end. The Aftcone
and Frontcone are axisymmetric approximations of the finocyl and reverse finocyl grain
geometries, respectively.

For each of the test cases, the throat dimension is 45.2 mm. Table 1 lists the operating
conditions. The burn rate is a constant, so there is no unsteady propellant response in this
study. The geometry of the Midcone is designed so that its burning area equals that of Aftcone
and Frontcone geometries. This ensures that the pressure at the nozzle end is nearly the same
(≈96.2 bar) for all these cases.

In addition to the test geometries, more realistic motor geometries of roughly the same
length and with initial four-fin finocyl and reverse finocyl grain configurations are also
considered for testing the quasi-1D tools. The grain geometries after few seconds of burning
are considered here. One eighth of the flow geometry of the former is shown in Fig. 5, and
its axial variations of the cross-sectional area and the perimeter of the grain surface are
shown in Fig. 6. A structured mesh is used for discretising the domain. The mesh near the
nozzle entrance is shown in Fig. 7. The axial variations of cross-sectional areas and burning
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Table 1
Operating conditions for the tests

Cylindrical AftCone MidCone FrontCone

Grain Length [m] 2 2 2 2
Burning Area [m2] 0.77 0.87 0.87 0.87
Throat Radius [mm] 45.2 45.2 45.2 45.2
Propellant density [kg/m3] 1,670 1,670 1,670 1,670
Propellant burn rate [mm/s] 7.84 6.96 6.96 6.96
Total Temperature of gas [K] 2,980 2,980 2,980 2,980
Gas MolWt[kg/kmol] 25.12 25.12 25.12 25.12
Gas γ[−] 1.214 1.214 1.214 1.214
Expected P0 at nozzle end [bar] 96.2 96.2 96.2 96.2

Figure 5. Geometry of the a solid rocket motor (one-eighth sector) with initial finocyl grain geometry after
few seconds of burning (a) whole length and (b) zoomed-in view of fin region.

perimeters for the two cases are shown in Fig. 6. The 3D simulations are also conducted with
the same parameter values, except for the burn rates, which are adjusted to achieve target
mean chamber pressures.

4.0 MODE IDENTIFICATION AND DAMPING
CALCULATION PROCEDURE

Determination of characteristic mode shapes and damping rates would be difficult when
multiple modes are activated. Doing so is considerably easier if only a single mode is activated.
Characteristic frequencies, on the other hand, are relatively easier to determine. Starting with
a converged steady-state solution, system response to random forcing at the head end in the
form fluctuating velocity is simulated. The frequency spectrum of predicted pressure-time
data has peaks at characteristic frequencies.

The pressures at several locations have to be noted with time in order to compute frequency
spectra. This is because use of the spectra at a single point is problematic. If a single point is
chosen and it happens to be a pressure node for one of the modes, the pressure spectra will
not show a peak at the frequency corresponding to that particular mode. The head end seems
like an ideal choice, but because random forcing is introduced at this end, the spectra tends to
be very noisy. The nozzle end of the chamber is also not a perfectly reflecting boundary. This
is why spectra at multiple locations are computed so that no peaks are missed.
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Figure 6. Axial variations of cross-sectional area and grain perimeter for motors with (a) finocyl and (b)
reverse finocyl grain geometries.

Smith et al(31) used a method similar to one used here to identify the eigen-frequencies in a
liquid fueled engine. In their work, however, identification of peaks clearly was not possible,
so instead of random forcing, they switched to forcing with a combination of multiple
frequencies. The forcing frequencies varied from the lowest to the highest in steps of 50 Hz. In
the present work, however, locating the peaks seems possible even with random forcing. The
difference is perhaps due to the aspect ratio differences between the solid rocket motors and
the liquid fuel engines. The lower modes in longer solid rocket motors tend to be primarily
axial, and there is no mode coupling with transverse modes. For nearly cylindrical geometries,
the characteristic frequencies are integral multiples of the fundamental frequency and can be
easily isolated. Even when the geometries are far from cylindrical, the lower characteristic
frequencies are well separated.

Even though peaks in the spectra are well separated, the characteristic frequencies are
not accurate due to the noise associated with use of white noise forcing and a rather small
time step. Using the rough estimate of a frequency peak obtained through random forcing,
the velocity at the head end is varied sinusoidally with a small amplitude. Only the mode
corresponding to that particular frequency is activated. The fluctuating component of the
pressure upon saturation provides the mode shape.

After saturation, the forcing is switched off and decay of a single mode is simulated.
By fitting the head-end pressure signal with a decaying sine wave, estimates of frequency
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Figure 7. Mesh used in 3D simulations close to the nozzle.

and damping rate are obtained. This frequency may be slightly different from one used
for forcing because the response to random forcing provides only a rough estimate. The
frequency obtained during damping can be used to simulate monochromatic forcing followed
by decay again. This kind of iterative procedure eventually leads to an accurate estimate of the
characteristic frequency. This iterative procedure is, however, not usually necessary because,
in all cases discussed here, the frequency estimated from the first decay simulation is within
0.5 Hz of the final converged value.

The procedure outlined above is followed in case of multi-dimensional simulations as well.
The results may, however, turn out to be different. Forcing is purely axial in the former.
In multi-dimensional simulations, the forcing at the head-end plane is multi-dimensional.
Therefore, the lateral modes may also get excited. As seen later, the amplitude of such
modes are very small for the geometries chosen here, and no distinct peaks corresponding
to them show up in frequency spectra. The identifiable peak locations are close to those in the
frequency spectra of quasi-1D results.

The CFD spectra will also capture peaks corresponding to vortex shedding, if any exist.
This study actually started with geometries with much steeper cone angles. The CFD spectra
showed additional peaks that were missing from those resulting from quasi-1D simulations.
The frequencies were too low to be associated with transverse acoustic modes. Vortex
shedding was clearly evident upon close examination of the vorticity fields. Vortex shedding
is one of the considerations while designing grain geometries for rocket motors. Abrupt or
steep changes in area are generally avoided to prevent vortex shedding. The area variations in
the geometries finalised for this study are more representative of practical designs.

In linear theory, each mode decays monochromatically. The amplitude decays
exponentially. Pressure perturbation corresponding to a single mode decays as follows.

p′(t; x) = poψ(x)eαt sin(ωt) … (14)

ψ(x) is the mode shape and po is the initial amplitude. The value of α is negative for a
damping signal. The net damping rate has contributions due to flow turning, nozzle radiation
and convection through the nozzle.

α = αF T + αNR + αNC … (15)
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By fitting a decaying sine-wave to the pressure signal predicted in simulations after turning
off the monochromatic forcing at head end after saturation, the net decay rate can be obtained.
Vuillot and Cassalis(22) provide theoretically derived expressions for each of the individual
contributions. The mode shapes required in these expressions can be obtained using the
eigen-solver. The latter approach based on a combination of a steady-state ballistics code,
eigen-solver and these expressions provides an alternative to simulation-based approaches.
The simulation-based approaches are simple but expensive due the fact that isolation and
estimation of decay rate have to be done separately for each mode.

The flow-turning loss is calculated using the following expression.

αF T = a

2k2
NE2

N

∫
Sinj

¯Minj

(
d p̂N

dx

)2

dS, … (16)

where

αF T is the flow-turning loss
a is the average acoustic velocity
kN is the wave number in radians per unit length, that is, kN = qπ

L
q is the mode number 1, 2, . . .

p̂N is the mode shape of the pressure fluctuation
EN is the pressure energy defined as E2

N = ∫
�

p̂N
2dV

� is the motor cavity
Minj is the injection Mach number

Calculation of αFT requires numerical evaluation of a volume integral and a surface integral
over the burning surface. The axisymmetric domains in this current study are discretised into
disks and integration is performed using trapezoidal rule.

The convection and the radiation losses due to a choked nozzle are calculated using the
following expressions, respectively.

αNC = aM̄L

∫
SL

p̂N
2dS

2E2
N

, … (17)

αNR = aR(AL)

∫
SL

p̂N
2dS

2E2
N

, … (18)

where, in addition to the terms mentioned above,

ML is the Mach number at the entry to the nozzle
SL is the area of the nozzle entry plane
R(AL) is the nozzle admittance, which for a short nozzle is R(AL) = γ−1

2 ML
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Figure 8. Frequency response of motor with Midcone geometry to random noise as predicted by (a)
multidimensional CFD (b) quasi-1D model.

The nozzle loss involves integration on the nozzle entry plane, in addition to the volume
integral for the acoustic energy. In both the above nozzle damping terms, the value of the
modal function value is obtained from the eigen-solver, which is assumed to be constant at
the nozzle entry plane. Hence, the above equations reduce to much simpler forms.

αNC = aM̄L
SL p̂N

2

2E2
N

, … (19)

αNR = aR(AL)
SL p̂N

2

2E2
N

… (20)

5.0 RESULTS AND DISCUSSIONS
Modal frequencies and shapes of the lower modes computed using different approaches are
compared first before presenting damping calculations. This comparison would be useful for
testing the quasi-1D approximation made in two of the approaches adopted here. Obviously,
transverse modes are expected to have higher frequencies and lower modes are all primarily
axial, but there is a possibility of coupled axial-transverse modes that needs to be checked.

5.1 Characteristic frequencies and mode shapes

The frequency responses predicted using the two simulation based approaches for the
Midcone geometry are shown in Fig. 8. This geometry has been chosen to highlight the fact
that frequencies of higher modes need not be integral multiples of the fundamental frequency.
In this case more than others, approximating characteristic frequencies using constant area
pipe harmonics would be highly erroneous.

Table 2 compares the lowest four characteristic frequencies resulting from various
approaches. The frequency spectra based on quasi-1D predictions, in general, tends to be
noisy due to use of a very small time step, which makes it difficult to pick out the peaks.
Only rough estimates of the characteristic frequencies can be obtained from this approach.
More accurate estimates can be obtained by filtering out high frequencies before calculating
the spectra or by using simulations of using monochromatic forcing and iterative adjustment.
These exercises are, as explained previously, not necessary because frequencies estimated
from damping simulations turn out to be very accurate.
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Table 2
Summary of modal frequencies

Method Cylindrical AftCone MidCone FrontCone

Mode 1 Eigen-solver 273 238 305 236
Quasi 1d 255 247 306 240
CFD 275 235 306 232

Mode 2 Eigen-solver 547 546 477 535
Quasi 1d 536 554 482 534
CFD 540 552 475 543

Mode 3 Eigen-solver 804 825 817
Quasi 1d 786 819 831 820
CFD 775 809 835 819

Mode 4 Eigen-solver 1094 1033 1068 1042
Quasi 1d 1063 1052 1065 1054
CFD 1070 1043 1075 1054

Figure 9. Mode shapes for the first mode for different geometries.

The first and second mode shapes resulting from the three approaches are compared in
Figs 9 and 10, respectively. The peak magnitudes are normalised to unity for convenience.

The first mode shapes predicted by the three approaches for any given geometry coincide
almost exactly, while the predictions for the second mode differ slightly at the nozzle end. One
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Figure 10. Mode shapes for the second mode for different geometries.

surprise in these results is that the predictions of the eigen-solver and CFD match very well
and differ from quasi-1D code results. The effects of the nozzle are present in both simulation-
based approaches, so the results of these two approaches should have actually been closer to
each other. This issue will be analysed further in the future.

One crucial point to be noted is that the mode shapes are not always symmetric. In general,
zones of larger area have smaller amplitudes. This feature plays a critical role in determining
the overall damping rate. Use of symmetric mode shape (assuming cosine function shaped
modes) would lead to significant errors.

5.2 Damping rates

The head-end pressure profiles predicted by the two (multi-dimensional CFD and quasi-1D)
solvers during the first mode decay in the AftCone geometry are shown in Fig. 11. Also
shown are the decaying sine wave fits to the predictions. The corresponding plots for the
second mode decay are shown in Fig. 12. Multi-mode decay was predicted in simulations
of Afroz and Chakraborty(20) due to use of cosine function for the mode shape in a non-
cylindrical geometry. With the procedure outlined here to isolate a single mode, decay at a
single frequency is predicted.

The decay rates computed using the three approaches are summarised in Table 3.
For the first mode, both simulations predict similar decay rates in all cases. The maximum

difference is less than 1%. For the second mode, however, the maximum difference grows
to about 5%. The analytical approach though quite different in terms of predictions provides
reasonable first-cut estimates of the damping rates.
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Table 3
Summary of damping rates

Method Cylindrical AftCone MidCone FrontCone

Mode 1 Integrals −71 −33 −85 −68
Quasi 1d −73 −40 −78 −71
CFD −73 −40 −79 −71

Mode 2 Integrals −70 −33 −58 −74
Quasi 1d −74 −37 −67 −81
CFD −75 −39 −69 −79

Figure 11. Decay of first mode in the AftCone geometry as predicted by (a) multi-dimensional solver and
(b) quas-1D model.

Figure 12. Decay of second mode in the AftCone geometry as predicted by (a) multi-dimensional solver
and (b) quas-1D model.

It must be noted here that the cylindrical case should not be compared at face value with the
others, since the injection velocity in this case is larger to compensate for the lower burning
area, to be able to maintain roughly the same mean chamber pressure across the cases.

The predictions of the analytical approach of Vuillot and Casalis(22) differ by as much
as 15%–20% from corresponding flow solver-based predictions. One known source of the
error is the use of pseuso-steady-state (short nozzle) assumption for nozzle admittance in
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Table 4
Summary of modal frequencies during damping

Method Cylindrical AftCone MidCone FrontCone

Mode 1 Quasi-1D 264.2 240.5 307.9 237.7
CFD 265.0 240.0 307.4 237.3

Mode 2 Quasi-1D 530.1 549.6 479.7 538.8
CFD 529.3 549.5 479.5 538.6

Figure 13. Contribution to the losses from different mechanisms.

calculation of radiative loss term. Measured values of nozzle admittance have been reported
to be higher(32) than estimates based on this assumption.

A glaring observation is that the Aftcone geometry has much lower damping for
both the modes. The Midcone geometry has greater damping for the first mode but a
lower value for the second mode as compared to the Frontcone. The Aftcone geometry
has less than half the damping of both the others. This effect needs to be understood.
Based on the fact that analytical approach roughly predicts the trends correctly (i.e. the
damping of the Aftcone is far lower than the other two), it can be used to explain the
observations.

The modal frequencies of the two approaches obtained from the fitting procedure are
tabulated and compared in Table 4. There is an extremely good match between the two
methods. The differences are much smaller here compared to those resulting from random
forcing and peak identification. This shows that the quasi-1D model is as reliable as the
complete CFD in predicting the acoustic frequencies.

Various contributions to damping are listed separately in Fig. 13. The highest contribution
to the damping comes from the convection at the nozzle end, followed by the flow-turning loss,
and finally the nozzle radiative losses. It is the nozzle damping component which becomes
small in the case of the Aftcone geometry as compared to the other two, in fact, this component
is almost one fourth of the other two.
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To understand the effect of the pressure fluctuations at the nozzle end, the theoretical
expression for nozzle damping is reproduced here.

αNC = aM̄L
SL p̂N

2

2E2
N

… (21)

The mass flux for all the cases is roughly the same because the propellant burn rate and
the surface area of the burning is equal in all cases. This implies that on the exit plane ṁ =
ρLSLUL is roughly the same for all the three geometries. Out of this, the density is also
not different for the three geometries, because the chamber pressure is the same, as is the
temperature. Hence, it is expected that SLUL is roughly same for all the three geometries. This
implies that aMLSL in Equation (21) must be roughly the same for all the three geometries.
Even if ML of the AftCone is smaller than in the others, the greater area at the nozzle end
compensates for this.

The main difference, however, comes in the value of p̂N at the nozzle entrance. For the
first mode, the value of the p̂N for the Aftcone geometry is about 57% of the corresponding
values of other geometries. Since this appears as the square in the expression, the numerator
in the above equations is much smaller for this geometry. Physically, this may be understood
in the following way: the larger the area, the smaller the magnitude of the fluctuation of
pressure. This is clearly seen from the mode shape diagrams as well as from the conservation
of momentum point of view. The Aftcone geometry with highest area at the nozzle entry plane
has the smallest fluctuations at the nozzle end. The smaller the fluctuations, the smaller are the
fluctuating energy convected out of the nozzle and the damping. To increase the damping, it is
the best to have the largest fluctuations at the nozzle entry plane so that the maximum energy
may be convected out. Blomshield(2,33) has noted this point while explaining why star-forward
geometry is more stable than the star-aft geometry in his analysis, although he later(1) added
velocity coupling and distributed combustion also as contributing factors.

Koreki et al(5) also prescribed grain shapes converging towards the nozzle end for increased
stability. They also observed that steeper area transitions are beneficial in such configurations
but detrimental in case of diverging grain configurations. Similar observations were made
in a computational study by Baczynski et al(13). The prescription of lower area at the
nozzle end also seems to be applicable in avoiding pulse triggering instabilities(6). Although
such instabilities are non-linear, the nozzle damping mechanism remains the same. These
observations being consistent with those of this study prove the usefulness of the quasi-1D
tools.

The flow-turning loss has been known to depend on where the mass is added into the bulk
flow(17). It is evident from Equation (16) that flow-turning loss is maximum when combustion
adds more mass where the pressure gradient is maximum (i.e. pressure node). The Midcone
geometry has more burning area in the middle; therefore, the damping rate of the fundamental
mode due to flow turning is the highest among all geometries. The second mode shape in this
geometry is almost symmetric, and the pressure gradient is near zero at the center, so its
flow-turning loss contribution is much lower.

Another, albeit smaller, effect comes from the value of the denominator (i.e. EN). EN is
evaluated from the expression

E2
N =

∫
�

p̂2
NdV … (22)
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Figure 14. Comparison of first modes in various geometries.

A smaller value of this integral will increase the damping. Observe the shape difference in
the mode shapes of the different geometries shown in Fig. 14.

It is evident that in the region where the pressure mode has a large value, having a larger
area increases the integral and hence reduces the damping. Hence, it is preferable to have a
greater volume of port where the pressure mode has the smallest value. Figure 14 shows that
only the Midcone case satisfies this criteria for the first mode. This integral is about 10%
lower in the case of Midcone when compared to other geometries. Note that Blomshield(1)

also prescribed more burning area in the middle, but that was based on combustion, a driving
mechanism. Having more area where pressure oscillations are minimal (at least in case of
first mode) lower the overall driving force. The damping effect of such a configuration is an
independent, additional benefit.

5.3 Realistic small rocket motor geometry

The frequency response to white noise in the motor geometry is plotted in Fig. 15. In this
case, the first two peaks correspond to 226 Hz and 524 Hz. Using this lower frequency for
forcing, the first mode is activated and its decay is simulated using both 3D CFD and quasi-
1D solvers. The predicted head-end pressures are shown in Fig. 16. The frequency and decay
rate resulting from fitting these curves with decaying sine waves are also noted in both cases.
The predictions of these quantities differ by less than 2% and 3%, respectively.

For the case of reverse finocyl grain, the quasi-1D code’s frequency prediction of 218.6 Hz
is very close to 217.1 Hz, a value predicted by the 3D simulations. The decay rates predictions
of 63.6/s and 64.0/s are also very close to each other.
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Figure 15. Frequency spectrum of the motor with finocyl grain due to white noise forcing.

Figure 16. Pressure profiles predicted for the motor with finocyl grain geometry along with corresponding
decaying sine-wave fits. The frequency and decay rate of the fit are noted in the legends.

6.0 CONCLUSIONS
The present work provides with very useful insights into the mechanisms of damping in
solid propellant rocket motors from different perspectives. The following is a summary of
the observations:
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1. The frequency of oscillations changes quite dramatically with the geometry. Given same
length of the motor, for the cylindrical grain the frequency is roughly 266 Hz, quite
close to the pipe harmonics frequency, the frequency of the Aftcone and the Frontcone
geometries is about 238 Hz (about 10% lower) and that of the Midcone is about 305 Hz
(about 14% greater). This range of about 25% is dependent on the area ratio of the larger
to the smaller portions. Thus, it is clear that the geometry of the grain can be designed to
have different characteristic frequencies.

2. The modes for a non-cylindrical grain are far from the pipe harmonics. Assuming a cosine
mode shape for a generic grain is bound to induce errors. The differences in the observed
damping rates between the grain geometries can be attributed to the mode shape.

3. The modal function value at the nozzle entry is a very important parameter in determining
nozzle damping. Higher the relative pressure mode value at the nozzle entry plane, greater
the damping. This fact is perhaps the single most important parameter to be incorporated
in the design of rocket motors, because the largest source of damping in the class of
motors studied is often the nozzle damping.

4. The analytical expressions of Vuillot and Casalis(22), when performed using the correct
mode shape, provide very quick rough estimates of the damping rates.

5. The observations on grain geometry effects in present work are in line with past
experimental(5,6) and numerical(11,13) studies. The effect of steepness of area variations has
not been explored in the present work but is planned for the future. The recommendations
regarding the grain geometry made here are based only on damping considerations
and combustion effects have not been considered. Some of the recommendations
of Blomshield(1) are based on combustion. It is interesting that these two set of
recommendations are mostly in line with each other.

6. The quasi-1D code predicts damping as that of CFD in most cases and almost the exact
frequencies as that of CFD. The quasi-1D code takes a small fraction of the time as that
of a complete CFD code, which makes the former a very good substitute.
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