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SUMMARY

A Gibbs phenomenon detector that is useful in damping numerical oscillations in hybrid solvers for com-
pressible turbulence is proposed and tested. It is designed to function in regions away from discontinuities
where commonly used discontinuity sensors are ineffective. Using this Gibbs phenomenon detector in addi-
tion to a discontinuity sensor for combining central and shock capturing schemes provides an integrated
way of dealing with numerical oscillations generated by shock waves and contact lines that are normal to
the flow. When complete suppression of numerical oscillations is not possible, they are sufficiently local-
ized. Canonical tests and large eddy simulations show that inclusion of the proposed detector does not cause
additional damping of ‘well-resolved’ physical oscillations. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hybrid solvers for simulating compressible turbulence rely on non-dissipative schemes for cap-
turing turbulence while switching to dissipative schemes in the vicinity of discontinuities [1, 2].
Recent state-of-the-art high-fidelity numerical simulations of supersonic turbulent flows involving
shocks [3] rely on the use of energy-consistent methods based on a central, locally conservative
discretization of the convective terms cast in skew-symmetric form. Shock capturing is then accom-
plished by hybridization with a dissipative (typically weighted essentially non-oscillatory (WENO))
scheme strictly applied around discontinuities. The use of dissipative schemes should be localized
appropriately. The use of dissipative scheme over a broader region around discontinuities leads to
undesirable dissipation of physical oscillations, while extreme localization leads to numerical oscil-
lations that persist for long distances. If proper localization is not possible, another mechanism is
needed to remove oscillations away from discontinuities.

Oscillations away from discontinuities are not unique to hybrid approaches. Hyperviscosity
approaches that are often implemented using central compact schemes resort to higher-order spec-
tral/compact/dealisaing filtering [4] sometimes in addition to smoothing of hyperviscosity computed
using polyharmonic operators to deal with this problem [4, 5]. Approaches based on characteristic
filtering built using compact schemes [6] also need additional higher-order filtering steps unless the
base scheme itself is upwinded [7]. Finally, the explicit filtering approaches also rely on two filters
[8]: one which is ubiquitous and the other localized. Only pure WENO schemes are immune to this
problem, but they have been deemed [9, 10] too dissipative to capture turbulence accurately.
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A simple and effective way of dealing with numerical oscillations in hybrid, explicit finite volume
schemes by basing the weights on a Gibbs phenomenon detector in addition to a more traditional
discontinuity sensor was proposed earlier and studied using canonical problems [11]. The present
work differs from an earlier study in two ways.

First, the Rotated Harten, Lax and van Leer (RHLL) solver [12] is used for capturing
shocks/contact lines here, while the earlier work was based on the SLAU2 scheme [13, 14]. Both
these schemes can resolve contact lines without odd–even instability. This ability of RHLL comes
from a combination of Roe and HLL solvers. While it provides crisper resolution of shocks than
SLAU2, problems could arise when this compound scheme is further combined with a central
scheme to formulate a hybrid scheme for compressible turbulence. This effort checks for such
unforeseen problems. The general applicability of the approach independent of shock capturing
scheme is also verified to a degree in the process.

The earlier work demonstrated hybridization for canonical problems that serve as prototypes for
actual turbulent flows. The validation was also mostly qualitative. No DNS or LES were reported.
In the present work, two LES are reported. The results are compared with published LES results,
and the effectiveness of the new approach over use of just a conventional discontinuity sensor is
checked. The new approach seems to be of less consequence in the first LES than the second, and
the reasons are discussed.

2. NUMERICAL METHOD

An explicit second-order Runge–Kutta scheme is used for temporal integration of the governing
equations. The net flux on a cell face is computed as follows:

Fh D �Fc C .1 � �/Fu (1)

Fc and Fu are the centered and upwind fluxes computed, respectively, using fourth-order Mac-
Cormack and second-order RHLL [12] schemes. The MacCormack scheme is apt because it is the
simplest non-dissipative scheme that does not need artificial dissipation or special care like the
Rhie–Chow correction [15] for preventing checkerboard-type oscillations on non-staggered meshes.
Fourth-order spatial accuracy is achieved by interpolating fluxes computed at cell centers to faces
using stencils proposed by Genin [2]. Fu is computed using the RHLL scheme developed by
Nishikawa and Kitamura [12]. It captures shock and contact discontinuities crisply without suffering
from carbuncle phenomenon or the odd–even instability.

The following discontinuity sensor proposed by Genin [2] is used here because it can detect
contact lines in addition to shock waves.

S�;i D
j�iC1 � 2�i C �i�1j

j�iC1 � �i j C j�i � �i�1j
; if j�iC1 � 2�i C �i�1j > ���i

D �S th� ; otherwise
(2)

SiC1=2 D max.SP;i ; SP;iC1; S�;i ; S�;iC1/ (3)

The constants �P and �� for pressure and density fields were set to 0.05 and 0.1, while the
corresponding threshold values S thP and S th� equal to 0.5 and 0.25, respectively.

Genin [2] used a Heaviside function of smoothness parameter to arrive at the weights in
Equation (1).

�old D 1 �H.S/ (4)

The discontinuity sensor activates the flux splitting scheme only near shocks and contact lines.
The proposed approach seeks to additionally suppress two-point oscillations that may not be
right next to the discontinuities. These oscillations could result from discontinuity sensor-based
hybridization as in the aforementioned equation (i.e., shift from a central scheme elsewhere to a
shock capturing scheme near shocks) or have other origins as in an example problem later.
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First, the Gibbs phenomenon is detected as follows:

S 0iC1=2 D
.�iC2 � 2�iC1 C �i /.�iC1 � 2�i C �i�1/

.�iC1 � �i /2
(5)

Extrema could actually exist in solutions of Euler equations, but existence of local maxima and
minima right next to each other on the computational grid is an unphysical artifact. At such locations,
the value of S 0 is negative. Shock capturing schemes are generally monotone by design, that is, they
do not result in any new extrema. By increasing the weight for the shock capturing scheme in the
presence of such numerical artifacts, it may be possible to suppress the creation of the two-point
oscillations.

�new D min

�
1

1C exp.14S/
; exp.min.2:5S 0; 0:0//

�
(6)

In addition to considering S 0 in determining the weights, the discontinuity sensor has also been
modified by smoothing the discontinuity sensor in Equation (4) with 1=Œ1 C exp.14S/�. The idea
is that more gradual changes in weights across a discontinuity might lead to smaller numerical
oscillations.

So the switching function is now calculated as a function of both S , the shock or contact discon-
tinuity sensor, and S 0, the Gibbs phenomenon detector. As in other alternate approaches [5, 9, 10,
16, 17], there are numerical constants involved in this procedure. The values shown in the afore-
mentioned equation, however, seem to work in all of the test cases including some that have been
left out here.

3. RESULTS

Four canonical problems are considered here before testing the proposed modification in a large
eddy simulations. Physical oscillations are not present in two of the problems, while in others, they
are generated because of the interaction of shocks with spatially varying density or vorticity fields.
The physical oscillations have to be captured where necessary without generating numerical ones.

3.1. Shu–Osher test

This problem involves a Mach 3 shock moving through a sinusoidally varying density field leaving
behind physical oscillations. Predictions of the proposed hybrid method on a 400-point mesh (like

Figure 1. (a) Comparison of predicted density variation with reference solution. (b) Effect of using the Gibbs
phenomenon sensor.
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in previous studies [2, 7, 16, 18]) are compared with a reference high-resolution solution (com-
puted using the shock capturing scheme on a 32,000-point mesh) Figure 1(a) and with a solution
computed with weights based on only the discontinuity sensor in Figure 1(b). The use of Gibbs
phenomenon detector seems to suppress not only two-point oscillations but also numerical oscilla-
tions of higher wavelength that probably arise as the solver responds to the former. The physical
oscillations, however, remain unaffected.

3.2. Axisymmetric blast wave

A two-dimensional circular blast wave problem proposed by Toro [19] is chosen as the second test
case. This, in a way, is an axisymmetric counterpart of the Sod’s shock tube problem, and so addi-
tional demonstration on the latter is not needed. Further, it involves a contact discontinuity that is
not present in Noh’s test problem [9]. The initial density and pressure are both set to unity inside a
circle of radius of 0.4, while they equal 0.125 and 0.1 units outside (gas constant is set to unity). A
quarter of the problem is simulated for time of 0.25 units by discretizing a unit square domain with
a 400� 400 mesh [18]), and density isolevels are plotted in Figure 2(a) in order to facilitate com-
parison with results from a comparative study of Liska and Wendroff [18]. In this study, all schemes
retained the axisymmetric nature of the shock wave but not the contact line. An early version of
WENO predicted a crisp contact line but was susceptible to numerical instabilities that produced
unphysical wiggles when the contact line was aligned to grid directions. High-resolution schemes
like the piecewise parabolic methods also produced unphysical wiggles but with less directional
dependency. The present hybrid scheme predicts a more circular contact line with less directional
dependency and smaller unphysical wiggles. The effect of including the new sensor in hybridization
is illustrated in Figure 2(b). The hybridization generates a post shock kink in density followed by
numerical oscillations. By using the Gibbs phenomenon detector, these oscillations are eliminated,
but a localized artifact in the form of a density kink, although diminished, remains. This is also a
feature of hyperviscosity approaches (as seen in solutions for the Shu–Osher test). Note that the
kink is reduced considerably when the RHLL scheme is used instead of the SLAU2 scheme [11].

3.3. Emery test case: supersonic flow over a forward-facing step

This flow [20] has many interacting waves and is a good test case for testing hybrid solvers. It
involves simulating the response of inviscid Mach 3 flow in a 3 � 1 sized channel to sudden
introduction of a forward-facing step at location x D 2. Most of the artifacts associated with shock
capturing schemes, like carbuncle phenomena, odd–even instability, if present, would be evident

Figure 2. (a) Predicted density isolevels for Toro’s blast wave problem. (b) Effect of using the Gibbs
phenomenon sensor on radial density variation.
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Figure 3. Density isolevels for the Emery test problem.

from the density isolevels plot [14]. The density isolevels predicted with (using Equation (6)) and
without (Equation (4)) using the Gibbs phenomenon detector on a 240 � 80 mesh are compared
in Figure 3. Without the Gibbs phenomenon detector, switching generates unphysical oscillations
behind the leading shock wave. They are to a large extent suppressed if this detector is activated. It
is also to be noted that the two simulations predict identical results around the two slip lines. First
one is generated at the shock triple point, while the second is generated at the convex corner of the
step. There are no unphysical jumps in density field next to the contact lines like in the case of the
blast wave problem. This problem seems to come up only when the contact lines are normal (and
perhaps at a non-zero angle) to the flow direction. If the contact lines are aligned with the flow, there
does not seem to be a problem in using the hybrid solvers.

3.4. Shock interaction with a single vortex

Compressible turbulence involves interaction of shocks with density/entropy fluctuations (as in the
Shu–Osher problem) and vorticity fields. Shock interaction with a single vortex [6, 7] is simulated
here on a uniform 250 � 100 mesh. An isentropic compressible vortex centered initially at [0.25,
0.5] is convected into a stationary Mach 1.1 shock located at x D 1 in a [0, 2] � [0, 1] domain.
The parameters of this test case are available from several previous studies and not repeated here.
Comparison of density isolevels in Figure 4 indicates that post-shock oscillations that are generated
are effectively suppressed by using the new sensor.

The streamwise variations of density along the line passing through the vortex core are com-
pared in Figure 5. The use of the proposed sensor removes not only the two-point oscillations
but also the numerical oscillations of lower wavenumbers that are generated as the hybrid solver
responds to the two-point oscillations. Other than these, the density fields are similar to each other
and are comparable in terms of captured features with the solutions from earlier studies [6, 7].
Lo and coworkers [6] predict a thinner shock by clustering the grid in the axial direction around
the shock.
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Figure 4. Density isolevels for the shock–vortex interaction problem.

Figure 5. Predicted axial density variations on the line passing through the vortex core.

3.5. LES of supersonic flow over a backward-facing step

In addition to a separation zone, this flow contains an expansion fan, a slip line, and a shock wave
interacting with an unsteady vorticity field. The details of the simulation are provided in Table I. To
the extent possible, the LES here are deliberately made identical to one from an earlier study [21]
to facilitate comparison. This earlier study used a validated LES solver and a subgrid kinetic energy
equation model, while a simpler Smagorinsky model [22] is used here. Assuming that flow settles
down to a statistical stationary state after initial five flow-through times, the statistics are computed
over the next 20 flow-through times. The convergence of statistics for this case is dictacted by the
dynamics of the recirculation zone. The simulation time (in terms of flow-through time) is unusually
high in order to account for possible low-frequency dynamics.

In the reference study [21], flow through a converging–diverging nozzle was simulated to generate
the inflow conditions. The mean streamwise velocity profile and the adiabatic wall temperature from
it are used to specify the steady components of the streamwise velocity and temperature (from Walz
equation). For unsteady components, a compressible version of the digital filtering approach [23] is
used here. Half a step height upstream of the step location (x D �H/2 where origin corresponds
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Table I. Parameters for LES of flow over backward-facing step.

Free stream Mach number 1.5
Total pressure 54 psi
Total temperature 300 K
Step height (H) 0.25 in.
Domain size 9.8 H � 5.0 H � 2.0 H
Reynolds number (freestream quantities, H) 250,000
Inflow boundary layer thickness (ıo) 0.08 in.
Distance between the inlet and the step location 1.9 H
Mesh size 240 � 140 � 64

Figure 6. Boundary layer characteristics half a step height upstream of the step. (a) Mean velocity profile in
inner scaling and (b) second-order statistics in Morokovin representation in outer scaling.

to the bottom of the step location), the boundary layer predictions are plotted in Figure 6. As seen,
the mean velocity profile deviates from the law of the wall. No attempt is made to satisfy the law of
the wall at the inlet; the inlet velocity profile provided in the reference study is used as is. The flow
may need to traverse over a longer distance for the linear and logarithmic scalings corresponding to
equilibrium boundary layers to be established. Lack of sufficient near-wall resolution may also be a
reason. It is also to be noted that the effect of expansion at the step could be felt upstream through
the subsonic portion of the boundary layer, and so a truly equilibrium boundary layer should not
be expected at this location. The boundary layer profiles of turbulent quantities at this Reynolds
number and Mach number are not available in literature. Widely known trends from DNS studies
[24] like peaks of velocity fluctuation levels remaining nearly unaltered but shifting closer to the
wall with increasing Reynolds number indicate that fluctuation levels of streamwise velocity are
overpredicted, while the Reynolds stress levels are underpredicted. Also, peaks in wall normal and
Reynolds stress profiles, which are expected to be in the first quarter of the boundary layer, are
closer to the middle of the boundary layer. LES-predicted peaks shift away from the wall as the
grid is coarsened [25], and so the deviations here may mostly be due to low resolution. The density
fluctuations profile is similar to those obtained in experiments and in LES of a 0.9 Mach number
compressible boundary layer [26], while it differs from one obtained in DNS of a 2.25 Mach number
boundary layer [27] that has a peak closer to the outer edge than the wall. At lower Mach numbers,
the Reynolds analogy seems to hold so that the density and temperature fluctuations peak at closer
locations, but as Mach number increases, both total temperature and thermodynamic pressure are
no longer uniform, and so density fluctuations peak in the outer half of the boundary layer, while
temperature fluctuations peak in the other.

The LES that performed with and without considering the Gibbs phenomenon detector (i.e., using
Equations (6) and (4), respectively) seem to produce indistinguishable results. The contour plot of
instantaneous density field from the former LES is shown in Figure 7. Unsteady disturbances that
propagate along the Mach lines starting at the corner of the inlet and wall boundaries are evident. The
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Figure 7. Density field predicted using LES.

Figure 8. Predicted mean velocity profiles at various axial locations. The symbols represent predictions of
reference LES [21], while solid and dashed lines correspond to predictions of present solver with and without

Gibbs phenomenon detector, respectively.

transverse velocity at the inlet is set to zero, while in reality, there is an updraft from the wall. The
unsteady fluctuations are also not solutions of the governing equations. These two approximations
generate some unphysical disturbances that may affect the flow downstream. The earlier study does
not have this problem because a precursor simulation was used to supply the inlet conditions. Other
than this artifact, all other features are similar in both studies.

The mean reattachment length turns out to be 2.98 H when the Gibbs phenomenon detector is
used and 2.97 H when it is not. Ayyalasomayajula and coworkers [21] reported a prediction of
2.82 H from their LES as compared with the experimental value of 3.0 H. If uncorrelated random
fluctuations are used to specify the inlet turbulence, the reattachment length predicted is about 4.3 H.
The shear layer instability at the step corner and subsequent breakdown are delayed because of lack
of large-scale structures in the flow when random noise is used. This delayed reattachment results
in a larger recirculation bubble. The use of random noise for inflow also leads to an overprediction
of the reattachment length in the subsonic case as well [28], but the 43% error seems much higher
in the supersonic case here.

The mean velocity predictions from both simulations shown in Figure 8 agree very well with those
from the reference study. The Gibbs phenomenon detector has no impact probably because the shock
is relatively weak and the slip line is parallel to the flow direction. Other important observation is that
the digital filtering approach generates a spectrum of eddies that trigger the shear layer instability as
needed.

The Gibbs phenomenon detector has no effect on the turbulent intensities as well as seen in
Figure 9. The simulations here overpredict the levels by about 15% compared with the reference
study except at the first location. The exact reason for this is not clear. Examination of contour
plots indicates the present resolution may be lower than in the earlier study. This, in addition to the
difference in subgrid modeling, could be a possible reason. The unphysical noise generated at the
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Figure 9. Predictions of turbulent intensity profiles at various axial locations. Symbols represent predic-
tions of reference LES [21]; dotted and solid lines represent LES predictions made without and with Gibbs

phenomenon detector.

Figure 10. Predicted density fluctuations at various axial locations. The symbols represent predictions of
reference LES [21], while solid and dashed lines correspond to predictions of present solver with and without

Gibbs phenomenon detector.

inflow (Figure 7) could also generate higher unsteadiness in the flow as it propagates through the
expansion fan at the corner.

Shown in Figure 10 are profiles of density fluctuations at the same four axial locations as in pre-
vious plots. At the first location, the fluctuation levels do not drop to zero above the shear layer
created by boundary layer crossing the step. As stated previously, the unphysical pressure distur-
bances generated at the corner of the inflow boundary and the lower wall travel along Mach lines
and disturb the flow outside the boundary layer. Other noteworthy feature is that the sharper peak
at the last axial locations seems slightly better predicted when the Gibbs phenomenon sensor is
used. This peak results from the unsteady fluctuations of the reattachment shock. The prediction of
the corresponding peak in transverse velocity fluctuations also improves with the use of the new
detector.

3.6. LES of a transonic boundary layer over a bump

The LES of an equilibrium transonic turbulent boundary layer passing over acircular arc-shaped
bump are performed to test the newly proposed sensor. Sandham and coworkers [29] have reported
an LES of this flow, and the same parameter set is used here to the extent possible so that their results
can be used for comparison. The flow/simulation parameters are listed in Table II. All listed length
scales are based on the inlet boundary layer displacement thickness (set to unity) as a reference.

The domain and mesh used for the simulation viewed from spanwise direction are shown in
Figure 11. The grid lines bend sharply above the corners at the start and the end of the bump, and
no attempt is made to smoothen the mesh so as to be consistent with the mesh used in the reference
study [29]. The mesh used here is coarser, but near-wall grid spacing in wall normal direction is
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Table II. Parameters for LES of a transonic boundary layer over a
bump.

Free stream Mach number 0.72
Exit pressure/inlet stagnation pressure 0.65
Inlet temperature 300 K
Bump base, height 80, 5
Domain size 240 � 62.5 � 16
Radius of curvature of the arc 163
Inflow boundary layer thickness 7.7
Mesh size 390 � 100 � 48
Min grid spacings in wall units 44, 0.67, 22
Reynolds number (freestream and bump base) 233,000

Figure 11. Grid used for the LES of transonic flow over a bump viewed on the X–Y plane (every fifth grid
line is shown).

ensured to be less than unity in wall units. Thirty additional points in the streamwise direction
are added, and the grid is stretched out rapidly to create a sponge zone so that disturbances at the
outflow boundary do not propagate in and contaminate the solution in the domain of interest. The
simulation is conducted for 16 flow-through times, but the predictions from the latter half are used
for computing the statistics reported here. As in the reference study, the flow is assumed to settle
down to a statistically stationary state after eight flow-through times.

No-slip boundary conditions are used at the solid boundaries. Wall temperature is specified to be
equal to the inflow stagnation temperature. Periodic and free-slip boundary conditions, respectively,
are used in the spanwise direction and the top boundary. Zero-gradient conditions for density and
velocity fields and a fixed-back pressure are used at the outflow boundary. The digital filtering
approach is used for specifying the inlet turbulence. Sandham and coworkers had used the synthetic
turbulence approach [29] but subsequently established that digital filtering leads to faster realization
of a turbulence and slightly better second-order moments [23]. Specifically, the synthetic turbulence
approach creates an additional peak in streamwise intensity in addition to the near-wall peak.

The predicted profiles of mean velocity and turbulent fluctuations at x D � 80 are shown in
Figure 12. This location is halfway between the inlet and the bump, and the flow has traversed a
distance equaling 40 times the displacement thickness from the inlet. This distance was used in the
simulation for testing their inflow generation technique by Sandham and coworkers [29]. The profile
seems to approach the law of the wall relatively quickly given that the inflow profile was specified
on the basis of outer scaling only. The normal components of the stress tensor are very close to
their equilibrium levels. The Reynolds stress levels drop drastically close to the inlet (as seen from
the profile at x D � 110), but peak level seems to recover to within 20% of expected value at
x D � 80 (note that the peak level of Reynolds stress is typically around �0:9u�2 in boundary
layers, where u�2 is the friction velocity). Complete recovery can be expected to happen given that
flow has to travel nearly seven more boundary layer widths before encountering the bump.

Although the filtering operation in the digital filtering technique mostly creates eddies that are
well resolved on the mesh, two-point oscillations can still be generated. The use of the Gibbs phe-
nomenon detector in the solver can result in additional dissipation that would not otherwise exist if

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 84:699–714
DOI: 10.1002/fld



DETECTION OF GIBBS PHENOMENON 709

Figure 12. Boundary layer characteristics at x D � 80 (midway between inflow and the bump). (a) Mean
velocity profile in inner scaling and (b) second-order statistics in outer scaling. The symbols denote Reynolds
stress profile at x D � 110, which is included here to show a steep drop in Reynolds stress level next to
the inlet. Change in profiles between x D � 110 and x D � 80 indicate the level of recovery towards an

equilibrium level.

Figure 13. Instantaneous velocity field predicted with the proposed approach. Isolevel indicating zero
velocity shows two separate zones of reverse flow near the wall.

it is not used. The process of generating a realistic boundary layer from inlet turbulence, therefore,
depends on whether the new sensor is used or not. In order to avoid drift between the two LES, the
sensor is used in both of them till x D �70. Downstream of this location, the sensor is used in only
one of the simulation. This way, the bump encounters similar flows that are free of poorly resolved
two-point oscillations in both simulations. Comparison of the predictions downstream of this loca-
tion (above and downstream of the bump) is then a true test of how well the unphysical oscillations,
whatever their genesis maybe, are controlled by the proposed approach.

The instantaneous streamwise velocity field predicted using the proposed approach is visualized
in Figure 13. A zero isolevel contour shows two separated negative velocity zones indicating a
smaller recirculation bubble before a large one further downstream. This feature is missing if only
a conventional discontinuity sensor is used. This is also evident in the skin friction coefficient plot
discussed later.

The Mach number predictions on the slip boundary are compared with those from the reference
LES in Figure 14. The shock locations are predicted to be slightly upstream of the previous LES
prediction (x D 32). The preshock (peak) Mach numbers turns out to be 1.147 when the new sensor
is used, and it is slightly lower (1.146) when it is left out. The value predicted in previous LES is
1.16. So the shocks are slightly weaker in the present study. The pressure predictions along the solid
wall are compared with the corresponding predictions from the reference LES in Figure 15(a). Both
predictions in the present study seem quite similar but differ from those of previous LES presumably
because of differences in predictions of separation zone dynamics. A zoomed-in view of the same
plot near the upstream corner of the bump is shown in Figure 15(b). The compression of the flow
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Figure 14. Freestream Mach number variation in the transonic flow over a bump.

Figure 15. Prediction of pressure on the solid wall.

along with the abrupt changes in mesh metrics generates numerical two-point oscillations at the
corner. When the new sensor is used, these are properly sensed and localized through the use of
additional dissipation.

The predicted skin friction coefficient variations along the lower wall are plotted in Figure 16.
The freestream stagnation speed of sound and stagnation density are used as reference quantities
to non-dimensionalize the wall shear stress just as in case of the reference study [29]. Use of the
new sensor seems to have a noticeable effect, especially on the post-separation dynamics. When the
proposed sensor is used, the flow separates around x D 11, reattaches (roughly around x D 20),
and then at the foot of the shock separates again. Otherwise, only one recirculation zone (between
x D 12 and x D 49) is predicted.

Comparison with results from previous LES is not made for the following reasons. The skin fric-
tion coefficient of the approaching boundary layer seems to settle down to a value between 0.0005
and 0.0006 before encountering the bump in that study, while in the present study, it is nearly dou-
ble. If the freestream values are used for non-dimensionalization while computing Cf , the values in
the figure would need to be scaled by a factor of 2.63. When this scaling is applied, the approach-
ing boundary layer asymptotes to a value around 0.0031. This is nearly the value obtained when
the DNS predictions of Spalart [24] are extrapolated to the momentum thickness-based Reynolds
number of the boundary layer here.

Not only the quantitative values but even the trends in the axial profiles of skin friction coef-
ficient differ between the two studies. If the shear stress is non-dimensionalized using the local
density instead of stagnation density, the resulting profile from the LES with the new sensor appears
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Figure 16. Friction coefficient on the lower wall. Freestream stagnation quantities are used as reference
values.

Figure 17. Normalized shear stress on the wall.

Figure 18. Cross-stream profiles of mean streamwise velocity at x D �120;�80;�40; 0; 20; 40; 60; 80;
100; 120 (profiles are in the order listed from left to right).
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Figure 19. Streamwise and cross-stream fluctuations at x D 0; 30; 60; 100.

Figure 20. Spanwise fluctuations and Reynolds stresses at x D 0; 30; 60; 100.
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qualitatively very similar to the one from previous LES. In fact, when scaled appropriately, the for-
mer profile matches almost exactly with the latter as shown in Figure 17. If the possibility of a
coincidence is ruled out, this plot serves as a validation for the approach proposed here.

Figure 18 shows the predicted velocity profiles along the cross-stream direction at various axial
locations. The predictions with and without the sensor (i.e., using Equation (4)) are almost indistin-
guishable and also differ little from the corresponding predictions of previous LES except perhaps
at two locations on either sides of the separation point (x D 20; 40). The cross-stream profiles of
second-order velocity statistics at four of the axial locations are shown in Figures 19 and 20. The
freestream stagnation speed of sound is used to non-dimensionalize the fluctuation levels. Except
on the very top of the bump, the predictions of both LES here match quantitatively well with those
from the earlier study. The differences in axial and spanwise resolutions could be one likely reason
why the reduction in turbulence levels due to compression differs between the two studies, although
the differences in predictions of the two LES here are minor but more noticeable than in the pre-
vious test case and those generated using the sensor are marginally closer to reference data from
previous LES.

4. CONCLUSIONS

Inclusion of a simple Gibbs phenomenon detector in the hybridization is effective in suppressing
numerical oscillations in canonical tests and LES. The key feature of this approach is the integrated
treatment for numerical oscillations both near and far away from discontinuities. It, however, does
not seem to affect the results in the LES of supersonic flow over a backward-facing step because the
shock is quite oblique and the slip line is parallel to the flow. The use of Gibbs phenomenon detector
does not seem to have added any additional numerical dissipation in this test case. The LES results
for the transonic flow over a bump, on the other hand, change noticeably if the new sensor is used to
determine the weights for combining the central and Riemann fluxes. The non-smooth variations in
grid metrics near the corners create two-point numerical oscillations that prompt the new sensor to
respond by increasing the weight of the Riemann flux. Also, the turbulence inside the boundary layer
is interacting with a normal shock in this case. When the proposed sensor is included, the separated
flow on the downstream side on the bump reattaches and then separates again at the foot of the
shock creating two separation bubbles just as in the LES of Sandham and coworkers [29]. Without
this sensor, there is only one large separation bubble. Comparisons with previous LES show that the
additional dissipation due to the use of the new sensor is not detrimental for capturing turbulence
while being effective in localizing the numerical oscillations.

The proposed strategy to control numerical oscillations seems most useful when the shock waves
are normal to the turbulent flow as seen from the Emery test and the second LES presented here.
LES solutions in the latter are affected when the new numerical oscillation sensor is used in the
hybridization even though the shock is quite weak. This sensor can be expected to lead to more
substantial changes in the solution when the normal shock is stronger. This happens in flows with
crossflow injections into supersonic boundary layers. The incoming boundary layer encounters the
leading edge of the shock at a right angle, a situation somewhat similar to one seen in the Emery
test case. The future work involves testing the new sensor for such a flowfield.
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