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A literature review on both the theoretical and experimental work on the stability and structure of supersonic boundary
layers has been made. New trends of theoretical research such as the parabolized stability equations and transition modelling
have been surveyed. Several types of breakdowns of incompressible and compressible boundary layers have be=n discussed.

1 Introduction

Extensive research has been carried out to study
the stability and transition of incompressible
boundary layers, but the compressible counterpart has
not received adequate attention. The effect of
compressibility on the structure of boundary layer
needs study. The present effort is to study the stability
behaviour of the supersonic and hypersonic boundary
layers in the presence of adverse pressure gradients
and free stream turbulence. Compressible boundary
Jayers have dominantly 2-D instabilities of Tollmein-
Schlichting (TS) waves in the early transition, which
couple with subharmonics in resonance and non-
resonance  mechanisms. Dominant  transition
structures are the A (hairpin) vortices (3-D) in
staggered (peak-valley) type and commonly occurring
with large amplitudes or in aligned pattern when
growth rate is supressed by extemal forcing,
implicitly (complaint coatings) or explicitly (suction,
favourable pressure gradients, cooling, etc.). The aim
of the present study is to see the occurrence of 3-D
disturbances ( A vortices) and predict transitional
criteria based on spatial growth rates in developing
flows by €" criteria for 2-D and 3-D boundary layers.
As the direct numerical simulations (DNS) studies are
confined to the low Reynolds number and simpler
geometries, the success of viscous flow around a
body largely depends on the modelling of laminar-
turbulent transition. Compressible boundary layer
transition study is very important in the design of
future hypersonic vehicles. Various works carried out
on incompressible and compressible boundary layers
relevant to our present effort have been discussed in
this paper.

2 Survey of primary and secondary instability
studies in boundary layers _

Subsonic disturbances in compressible unbounded
(free) shear layers are 3-D primary instabilities unlike
the 2-D nature in boundary layers and confined shear
layers. These are the modifications of vorticity modes
for incompressible flows. For supersonic flow, up to
the local Mach number of 2.0, the disturbances are
similar to those of subsonic disturbances. For Mach
number greater than 2.0, these disturbances are 2-D
and consist of both primary and secondary
instabilities. They are complicated mades of vorticity,
entropy and pressure (shock) waves.

Stability research in incompressible boundary
layers (BLs) dates back to Prandul'?, with first
experimental confirmation by Schlichting’ , and later
by more correct experimental confirmation by
Schubaver and his coworkers*® wsing hot wire
anneometry. The 2-D nature of Tollmein Schlichting
(TS) waves preceding transition was discovered by
them. Dhawan and Narashima®, Sato” and Klebanoff
et al®® confirmed experimentally a critical Reynolds
number of 600 for sand-paper-twvpe distributed
roughness, and also identified the 3-D nature of
transition streaks (A or hairpin vortices), together
with the turbulent spots. Effects of free stream
turbulence and wall roughness on the transition
characteristics were also studied by them. Klebanoff
and Tidstorm’ experimentally confirmed that
instability waves precede transition and that
instability amplification is a precurscr to transition in
a flow behind a 2-D roughness element. With the
development of compressibility theory by

Langerstorm ez al.'’, theoretical stability studies were -

initiated by Lees and Lin' and many others'>.

These works mostly consist of development of linear
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stability theory (both inviscid and viscous) using

parallel flow, normal mode assumptions and
numerically integrating the stability equations.
Experimental confirmation of critical Reynolds
number for subsonic and transonic flows was given
by Laufer'™™ and Narasimha” . Van Dreist and
Boison”, Van Dreist and Blumer”, and many
others™® extended the study to supersonic and
hypersonic flows. With increase in Mach number,
higher modes known as Mack-modes were
determined. Also, in the absence of definitive
transition theory, various criterion to mark the onset
of transition were used. Van Dreist and Boison®' used
the ratio of Reynolds stresses to mean viscous
stresses equated to a certain critical value as a criteria
to locate transition inception. Laufer and
Vrcﬂavich", Laufer” and Pate™ on the other hand
ased a correlation to demarcate transition based on
iradiated sound level from wall BLs. Another
approach is to use linear stability theory, though it
suffers from the limitation of being linear. In
transition research, although, the critical Reynolds
number is, at times, a useful quantity in stability
theory, it is too remote from transition in most
instances to serve as an indication of transition
dependence on the mean flow. Thé amplification of
it disturbances is a decisive factor and not its initial
point of instability. Calculations of amplitude growth
of constant frequency disturbances led to the well
known &’ criterion of Smith and Gamgeroni% and Van
Ingen?, later modified to e'® by Jaffe et al.® and used
by Mack™ to correlate the numerical stability results.
Most experimentalists have approached the BL
transition problem by artificially exciting the flow
with relatively 2-D small amplitude, single frequency
excitation devices, such as vibrating ribbons and
acoustic speakers. They often went to great lengths to
reduce the background disturbance levels to an
absolute minimum in order to make the external
forcing in their experiments as small as possible. The
nitial disturbance should be harmonic in time and 2-
D, which is well described by linear stability theory
for the low Mach numbers at which most experiments
have been carried out. This 2-D linear behaviour can
persist over long streamwise disturbances when
excitation levels are sufficiently small, but eventually
become 3-D, as evidenced by the appearance of A
shaped structures in experiments where smoke flow
visualization is used. These structures, which are
arranged in rows, can either be aligned or staggered
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in alternating rows. The unstaggered arrangement

which was first observed by Klebanoff et al®, is-new— yemoL

staggered arrangement which usually appears at low P74

excitation levels, is believed to be the result of
resonance triad interaction between a pair of oblique
subharmonic modes (which originate from
background disturbance environment) with the basic
fundamental 2-D mode. Transition research needs to
address the receptivity problem, which is summarized
in the reveiws by Reshotko” and Goldsetin and
Hultgren™ .The detailed mechanism of how the BL
ingests external acoustic waves oOr turbulent
fluctuations in a given geometry with inadvertent
roughness and vibrations of the solid boundary is
denoted as receptivity. It also involves understanding
of the mechanisms by which a forcing disturbance of
a given frequency and prescribed phase velocity
excites a free disturbance of same frequency but
different phase velocity. From such studies it became
clear that strong inhomogeneities of the mean flow
lead to local regions, where disturbances aquire the
TS wavelength and couple locally with the TS wave.
Also, factors which affect transition may be
controlled for effective drag reduction. To laminarize
the flow, it is seen that suction, cooling in air, heating
in water and favourable pressure gradient tend to
make d?U / dy ? negative and aid the laminarization
process. It is observed that under the presence of very
small adverse pressure gradient, linear growth rates
will be small, of the order of, pressure gradient
squared, and the instability wave wiil have a well
defined critical layer, but will be of a non-equilibrium
(or growth dominated ) type rather than the
equilibrium (or viscous dominated) type associated
with TS waves.

The instability dynamics is quite different at
supersonic speeds. This involve linear inviscid as
well as viscous modes. At high Mach numbers, the
most growing linear mode is the oblique mode. Thus,
to simulate the transition phenomena at high speeeds,
one needs to artificially generate the oblique modes,
generally done in pairs which are progressive in the
streamwise direction but stationary (standing modes)
in the spanwise direction. This is done by generating
pairs of oblique vortices of opposite rotation. The
high speed Mack modes (supersonic type) occur
theoretically when the free stream flow has a local
Mach number, M > 2.2, but it is not experimentally
detected until M > 4.0. In contrast to the first or TS
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the higher modes are destabilized by
cooling'®”'. On the other hand these modes are
stabilized by favourable pressure gradients™ , or by
suction’>>>. In supersonic flows, studies on the effect
of nose bluntness (leading edge) on stability has been
done by many workers*™® . Pruett et al.® extended
such studies to hypersonic flows. It is observed that
for a blunt flat plate, upstream of the location where
BL swallows the layer coming through the strong part
of the bow-shock wave (entropy layer), both BL and
the shock are seperately unstable in a generalized
inflectional sense. After the BL swallows the entropy
layer, the BL profiles asymptotes to those of the sharp
leading edge and their stability characteristics follow
suit. Within the swallowing region, the stability
charecteristics are also affected by the fact that the
shock layer of the flow at the edge of BL is non-
uniform in the vertical coordinate y. This stabilizes
the first mode but destabilizes the second mode. For
hypersonic flows, the thickness of the shock layer is
small; hence, the shock layer is affected by free
stream disturbances. Hence, one cannot have normal
mode eigen-functions which decays exponentially at
infinity, but must have boundary conditions giving
finite amplitude disturbances at infinity. Such
hypersonic stab;hty models have been proposed by
Cowlcy and Hall®® using triple deck theory” extended

..... mpressible flows. The use of impulse response
techmques to analyse stability of BLs may be
accounted for m the pioneering work of Criminale
and Kovasznay* and Gaster** with the experimental
verifications given by Gaster and Grant ™.

Jmode,

3 Special study of theoretical work on non-linear
stability analysis

Most of the earlier discussion in BL stability was
focussed on the stability developments. Weakly and
fully non-linear analysis was done on two fronts— (i)
to account for breakdown of parallel flow assumption
and (ii) to develop models describing resonance triads
to explain the aligned (A) and staggered (hairpin)
vortices, representing 3-D disturbances. Non-parallel
stability problems for incompressible BLs have
yielded to dlfferent asymptotic methods. Bouthier*®
and Gaster® gave a reliable and effective successive
approximation procedure to describe the non-parallel
linear growth of TS waves in developing BLs. At
zeroth order, the Orr Sommerfeld equ ation (OSE) is
obtained by this procedure. Gaster” showed that this
approach was capable of improving significantly the
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agreement between the theoretical and experimental
results. An alternative approach based on more
formal asymptotic methods was developed by
Smith®. This asymptotic expansion was developed in
an appropriate manner to capture either the lower or
the upper branch of the stability curve. Typically it
was found that the lower branch structure, based on
triple deck theory, is most successful in reproducing
the available experimental results. Since the earlier
mentioned successive approximation method is
capable of producing both branches of the the neutral
curve, it has been argued elsewhere® that this is the
most efficient method of determining growth rates in
developing BLs. This argument has been reinforced
by the development of high speed computers which
make the OSE solution a routine task. However, since
most important problems in BLs stability theory
concern non-linear effects, and the multiple deck
solutions provide the only rational self-consistent
framework for non-linear studies in developing BLs,
it is clear that, if anything other than linear growth
rates is required, the successive approximation
procedure is of limited use. Multiple deck theories
have also been extended to compressible BLs.
However, it is seen that the Cowley and Hall's®”
calculations for stability of wedge flows, in presence
of shocks, cannot be tackled wusing successive
approximation techniques. For many years, non-linear
stability in hydrodynamics was almost exclusively
based on ideas on the expansion procedure of Stuart™
and Watson®. This procedure uses underlying
procedures of strained coordinates to formulate the
multiple scales to describe how the energy in a wave
cascades into the harmonics, which enables us to
calculate the amplitude of the wave at Reynolds
numbers close to the neutral one. The application of
this method to BLs gets complicated due to BL
growth. It was not until Smith*’ who applied triple
deck theory to the problem, that a self consistent
derivation of the amplitude evolution equation of the
TS wave was available. This formulation is valid near
the lower branch of the neutral curve. In subsonic
compressible BLs, inviscid modes are possible causes
of instability. . The wavelength of these modes
typically scales on the BL thickness, so that a
multiple scale approach leads to Rayleigh€ # equation
at zeroth order in an asymptotic description of these
modes™. However, in high speed flows inviscid as
well as viscous modes are important. However,
asymptotic investigations for inviscid compressible
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linear theories for the development of 3-D structures
have an intrinsic shortcomming in that they are
necessarily dominated by long (viscous) time scales,
(characteristic of linear theory), whereas the effects
they are intended to elucidate, develop on fast
(inertial) time scales. Fully non-linear simulations as
given by Orszag and Patera’, Herbert™® and El-
Hardy” reveal that fast, short wavelength 3-D
instabilities with the same periodicity of the basic
wave, are a precursor in the transition regime
developing to turbulence. The BL experiments show
that TS waves of sufficiently small amplitude
harmlessly grow and decay. At larger amplitudes, TS
waves form 3-D structures in the form of A vortices
(aligned configurations) of subharmonic modes or
combination modes. The occurrence of 3-D structures
is a necessary prerequisite, but not an assurance for
breakdown. Breakdown occurs only under some
specific modulations to the TS wave. The H- type
breakdown in incompressible BLs was proposed by
Herbert, based on an extension of linear secondary
instability theory of Herbert and Markovin® to the
finite and large disturbances. The work of Herbert
and Markovin® essentially consists of a non-resonant
type excitation of a 2-D TS wave (o, 0) with a
longitudinal vortex mode (0, B ). However, it lacked
the non-parallel considerations, and essentially
borrowed ideas from Maseev® . Herbert’'s work
involve study of large secondary disturbances,
leading to H- type breakdown, due to interaction of 3-
D secondary instabilities, parametrically excited by a
2.D TS wave in BLs. This is a fully non-linear type
analysis and Floguet theory forms the natural basis of
such studies that was applied earlier in the work of
Orszag and Patera”. The breakdown associated with
this resonance triad is called as H-type (or Herbert’s
type ) breakdown and is associated with the staggered
configuration of vortices observed experimentally by
Saric and Thomas™ and Kachanov and Levchenko™.
In Floguet theory, one considers parallel flow with a
superposed wave of fixed amplitude and period
together with a coordinate system moving with the
wave (at wave speed). The linear stability”” was
governed by a Floguet system of differential
equations and periodic coefficients. For 3-D,
incompressible BLs on swept wings, El Hardy’s
model® can predict large amplification for the
subharmonic wave depending on the initial spectrum
of amplitudes and phases of the triad components.
The nature of subharmonic instability development

and breakdown for compressible BL flows is not well
understood, but has been studied recently by El-
Hardy®?, Masad and Nayfeh”, Ng and Erlebacher®.
The most unstable disturbance in compressible flows
is either a 2-D disturbance, for M<1.0, or an oblique
mode for M >1.0. Ng and Erlebacher® applied
Floquet theory modified for primary oblique waves,
but nothing was discovered about the types of
breakdown except that secondary instabilities are
formed and the compressibility has an overall
stabilizing nature on the subharmonic instabiltiy
modes. Masad and Nayfeh® found numerically that
increasing the Mach number stabilized the most
unstable subharmonic waves. The decrease in

_subharmonic amplitude with the increase of Mach

number might affect the production of streamwise
vorticity, resulting in slowing or delaying the flow
breakdown to turbulence. Also, it is found that the
maximum of root mean square values of the
secondary harmonic stream-function eigen-functions
(representing  kinetic  emergy  of secondary
disturbances) moves away from the wall following a
critical layer as the Mach number increases. This
suggests that the exchange of emergy among
secondary disturbances, the mean flow and the
fundamental wave takes place around this location at
different Mach numbers. A discussion on the present
status of experimental results of boundary layer
stability is summarized by Mueller™ and the results
based on a theoretical foundations is summarized by
Reed et al®® and Herbert®. Another concept which
has aided stability research in BLs (and proposed
only a decade ago) is the application of parabolized
stability equations (PSE). A review of studies in this
area is given by Herbert™.

4 Special survey of experimental work

The crucial ingredients of turbulent flow usually
originate in the transition region, viz. vortex
interactions, leading to 3-D vortex structures and
transition studies help in understanding the
mechanism from where they originate in turbulent
flows. Mueller's work™ gives a historical note on the
development of smoke visualization and hot-wire
anneometry and also present the respective
experiments using these instrumeats in the study of
transition research. Brown®* initiated research using
a spinning tangent-ogdive nose axisymmetric model
and found striations corresponding to cross flow
vortices due to inflectional instability. Later, when he
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used a non-spinning model, he was first to observe
and photograph TS waves and their breakdown using
smoke visualization. These photographs revealed the
TS waves (2-D) deformed to 3-D forms and formed
vortex loops which Brown called trusses and then
broke down into turbulence. The transition process
occurred naturally as a result of free stream
turbulence in a low turbulence wind tunnel (i.e.
turbulent intensity less than 0.1%) and not caused by
vibrating ribbon or tape. Hama et al% did flow
visualization study in water of 3-D features of
transition (found earlier) by vibrating ribbons. Trip
wire caused 2-D vortices to be shed and deformed
into 3-D vortex and vortex loops which get stretched
and deformed as they moved downstream and
eventually into turbulence. Further research by
Brown'* (over the next decade with hot-wire
anneometry) over a body of revolution helped him to
characterize the natural transition in 4 stages, namely,
(1) formation of a set of 2-D waves, (ii) 3-D
deformation of these waves, (iii) region of vortex
trusses (or hairpin vortices) and (iv) breakdown of
vortex trusses into regions of turbulence. Laminar
region shows breakdown followed by reappearance of
2-D waves. These vortex trusses have aligned or
staggered attachment. Brown" found that anything
that delays formation of A -vortices causes the
staggered pattern to form. (e.g. lower pressure
gradients, lack of artificial forcing, etc. ). The K-type
breakdown study of Klebanoff er al.® with vibrating
ribbon on flat plate showed that in low disturbance
environments, the forerunner of transition to
turbulence is the 2-D TS instability wave. Their hot-
wire experiments showed that 2-D wave stage was
followed by an ordered (aligned) pattern of
A vortices. Peaks followed peaks, and valleys
followed valleys in K-type breakdown. Markovin®
presented a critical evaluation of the state of
understanding of transition in 1969. This
comprehensive evaluation, however, did not clarify
the understanding of the origin of aligned and
staggered A vortex pattern. While the research of
Brown'* and others®” " showed the way in transition
studies, the research of Head”' led the way in the
visual study of structure of turbulent BLs. Smoke
visualization studies came into the picture in late
1970's, and in early 1980's it became an important
tool (for more details refer Mueller™). In 1977,
Kachanov and Levchenko™ first reported
measurements of subharmonic signals in their hot-
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wire study of the non-linear development of a wave in
BL. Thomas” observed frequency halving of hot-wire
anneometer signals which was consistefit with the
staggered pattern A of vortices with wavelength 2 A,.
These quantitative indications of subharmonic mode
were clarified later by smoke visualization. Tani’”
discussed the theoretical work of Craik® and others
on non-linear interactions among 2-D and 3-D waves
with two frequencies. However, he was inconclusive
about the problem. Kegelman™ and Mueller®™ used
different models of axisymmertic bodies and at least
3 different modes of transition were observed over
the range of conditions given as follows: (i) the 2-D
TS waves may stop growing in locally favourable
pressure gradients, (ii) for somewhat larger
amplitudes of TS waves, a secondary instability takes
place leading to a staggered A vortex pattern and (iii)
with still larger amplitudes of TS waves the A
vortices are aligned. Kegelman™ was able to change
the staggered patterns to aligned patterns by acoustic
enhancement of the amplitude of TS waves, all other
conditions remaining unchanged. The staggered A
vortex formation was a puzzle ever since they were
observed by Brown and others®” . These were
reorganized by the fact that the visible wavelength
suddenly doubles from the upstream TS wavelength
of the growing TS waves. Craik™® in 1971 presented a
theory for a flat plate which described the mechanism
of non-linear traid resonance (referred to as C-type
breakdown) which appeared to explain some of the
staggered A vortex formation. Herbert’ %%
recently described another subharmonic mechanism
consistent with the visual and hot-wire information,
called as H-type breakdown. The combined hot-wire
and smoke-wire studies of Saric and Thomas™ and
Kachanov and Levchenko® showed the difference
between C-type, H-type and K-type breakdowns. Two
excellent detailed reveiws of secondary instabilities
in boundary layers are given by Thomas™ and
Herbert”. When 2-D TS waves of frequency, f, grow,
towards the end of the passage of amplification of
linear stability theory, it passes energy, non-linearly
to skew vorticity waves of frequency f/2. Such skew
waves are observable at the legs of A vortices.
According to Saric and Thomas™ the threshold for K-
type breakdown is as low as 0.003 {Jyinvolving skew
waves. Herbert’s H-type breakdown have A vortices
of short spanwise scale and the threshold value is
lower. than that of K-type breakdown. Hairpin
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‘vortices are seldom detectable, but it is topologically

same as K-type breakdown. At intermediate Reynolds
number, the Craik or Herbert breakdowns are found.
Kegleman and Mueller’® found that at high
frequencies, A vortices appeared in staggered pattern
when sound waves are introduced at low amplitudes
and an aligned pattern when sound was introduced at
high amplitudes. These breakdown into spikes—short
lived, large amplitude pulses, which are deterministic
in nature (turbulent spots). At low frequencies the A
vortices always appeared in aligned fashion. The
breakdown of aligned vortices into intermittant, large
amplitude fluctuations (turbulent spots) represents K-
type breakdown. This staggered pattern is also related
to the N-type breakdown phenomena where
subharmonic resonance plays a decisive role . The
subharmonics have a detuned frequency, % of that of
the primary wave. The staggered pattem vortices
breakdown into random fluctuations into turbulence
via secondary instability mechanisms. These acoustic
responses were given to make the 3-D response of TS
waves sensitive to both frequency and amplitude.

It may be noted that Liepmann’’ was the first to
convert linear stability results into a transition criteria
for practical applications. His criteria is based on the
ratio A/A, , where A(x) is the wave amplitude as it
evolves downstream and A, is the unknown but small
amplitude at the onset position x of instabilty. Based
on Gaster’s work ", the phase velocity ¢ was replaced
by the group velocity c, to correctly convert the
temporal to spatial growth rate. The amplitude ratio is
given by (—0; is the spatial growth rate)

o (%)= In(Al &) = - [ai( £.0) 4 ()

Xo

Liepmann’’ related the critical value of amplitude
ratio to the skin friction coefficient C in laminar flow.
Smith and Gamberoni®® and Van Ingen” later found
that transition in wind tunnel tests correlated well
with values of N factor, [N = max o (x,, )], N taking
the values between 6 and 9 and A,, /A, = €' . The "
method for 2-D TS waves has been extended to
compressible and 3-D boundary layers, and to other
types of instabilities such as Gortler vortices on
concave walls, the cross- flow instability in 3-D flows
over infinite swept wings” and Mack’s higher modes
in supersonic flows. Today the " method is the

mainstay of transition prediction in aerodynamic
design.

5 Special survey of parabolized stability equations

Parabolized stability equations % (PNE) have
opened new avenues to the analysis of streamwise
growth of linear and non-linear disturbances in slowly
varying shear flows such as boundary layers, jets and
wakes. Growth mechanisms include both algebraic
transient growth and exponential growth through
primary and higher instabilities. In contrast-to the

eigerdsolution of traditional linear stability equations, (=) <<=

PSE solutions incorporate inhomogeneous initial and
boundary conditions as the numerical solutions of
Navier-Stokes equations do, but they can be obtained
at modest computational expense. The PSE codes
have developed into a convenient tool to analyse
basic mechanisms in boundary layer flows. The most
important area of application, however, is the use of
PSE approach for transition analysis in aerodynamic
design. Together with the adjoint linear problem, PSE
methods promise improved design capabilities for
laminar flow control systems. Flow non-parallism
was tackled by Gaster* and Boulthier* where WKB]
theory (or multiple scales) formed the intermediate
step leading to a partial differential equation (p.d.es)
similar to parabolized Navier-Stokes equations,
except for additional terms containing frequency and
wavenumbers. Gaster went further to reduce the
pdes. to more tractable ordinary differential
equations. These final steps are unnecessary as they
severely restrict the scope and validity of the resulting
equations. The intermediate p.d.es. were used by
Herbert™ to validate Gaster’s results and encouraged
the potential of the PSE (or earlier mentioned
intermediate p.d.es) for research and engineering
applications. The parabolized stability equations are
given as follows:

L q =0, L being the linear stability operator, we have

L+ el rgsem L+ vy S
de ap

: s )
r-e{ %N q+i€N q
dE 1 dp 2

where the operator L, L', M, , M, N;, N, ,actiny
only. The term in square brackets can be neglected
because N; and N; originate from viscous terms of ~ 0



( Re™). The function r = r(y) on the right side
represent non-linear terms that need further
discussion which may be found in Herbert's reveiw®

At limit £ —0, we get the governing equation of lmear
stability theory. The use of marching technique for
solving PSE is permitted only if the stability problem
is governed by downstream propagating information.
Hence PSE approach is valid for convectively
unstable flows. The PSE equations are not really
parabolic and similar to parabolized NSE. The PSEs
exhibit weak ellipticity. The PSE account for the
history of the disturbance and. for streamwise
variation (non-parallel effects) of the flow. Non-
parallelism is partially included even if L” =0. The
operator L requires small-velocity terms that are not
provided by most BL codes and are difficult to
retrieve from numerical data (L’ =0 governs parallel
flows, 2-D flows, quasi 3-D flows on swept
cylindrical bodies such as infinitely swept wmgs)
This special case has been studied by Bertolitti®. For
a =0, the PSEs are closely related to the parabolic
equations introduced by Hall® for the analysis of
Gortler vortices. The PSE provides a connected
physical solution along the marching path and spatial
amplitude growth curves o (x; ®,B ) directly for use
in the ¢ method. Long waves and surface curvature
can be treated consistently. The initial -boundary
problem is suitable for analysing exponential as well
as transient growth of disturbances. The PSE can be
solved with disturbed boundary conditions. These
inhomogeneous  conditions include freestream
turbulence or roughness that does not affect the basic
flow. The PSE allows for an inhomogeneous RHS
term r that may originate from non-linear terms (V’.
V )V’ in combination with other forcmg functions.
Systems of PSE for different frequcnmcs ®, and
wavenumbers B, can be solved simultaneously to
trace the non-linear evolution of single mode or
interactions of different modes. For these reasons, the
PSE approach is suitable for simulating the early
stages of transition. The PSE can compete with direct
numerical simulation (DNS). The PSEs have been
extended to compressible flows®. With a restricted
number of modes, the PSE method allows fast
transition simulation up to the breakdown stage where
significant changes in skin friction (or heat transfer)
occur. The marching solution terminates typically,
because the iterative update of wavenumber or the
iterative solution of the non-linear system for
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different modes fails to converge. On comparing
Gaster’s"” method of successive approximation with
Herbert’s PSE method® , we may say that the former
method® is non-parallel by successive approximation
but the latter method® is non-parallel and fully non-
linear. Further discussion of the present status of PSE
applications and future developments are summarized
by Herbert®.

6 Special survey on laminar flow control

A strong international interest in the problems of
stability and transition in wall-bounded shear layers
exists in connection with the design of gas-turbine-
engine blades and vanes, submarines and torpedoes,
subsonic and supersonic civil transports and fighters,
hypersonic and re-entry vehicles. Understanding
transition is necessary for accurate prediction of
aerodynamic forces (lift and drag) and heating
requirements. Moreover, delaying transition by
various techniques of laminar flow control (LFC)
generally results in lower drag and, therefore, higher
fuel efficiency™ > . It has been estimated that if
laminar flow could be maintained on the wing of a
large transport aircraft, a fuel saving of up to 25%
would be obtained ***. Of interest to turbulence
community is the fact that BL flows are open
systems, strongly influenced and dependent on
freestream and wall conditions. Breakdown to
turbulence has been well documented to vary
considerably when operating conditions change as
evidenced by the works of Saric and Thomas™ and
Corke”. The transition process then provides vital
upstream conditions from which the downstream
flowfield evolves, and it is reasonable to imagine that
different transition patterns give rise to different
turbulence characteristics downstream. To control
skin friction or heat transfer one either modifies the
turbulence structure or prevents the BL from
becoming turbulent by limiting the growth of
disturbances. The latter technique is known as
laminar flow control (LFC) and is efficient only in
low-disturbance environments. For engineering
applications, passive control (i.e. static manipulation
of the boundaries of the flow field) seems more
feasible than active feedback control through wave
cancellation.. As linear stability can easily be
calculated, passive control schemes are- usually
designed based on linear theory. However, since the
initial conditions (receptivity) are not _ generally
known, only relative comparisons between control
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"schemes are possible. For 2-D BLs, the growth of

linear disturbances is weak and occurs over a viscous
length scale and can be modulated by pressure
gradients, mass flow, temperature gradients, etc. As
the amplitude grows, 3-D and non-linear interactions
occur to form secondary instabilities™. At this point,
growth is very rapid (now over a convective length
scale) and breakdown to turbulence occurs quickly.
On the other hand, for 3-D BLs (e.g. swept wings)
and Gortler problems (concave surfaces), non-linear
distortions of the basic flow may occur early due to
the action of primary instability. These flows are
characterized by extensive distance of non-linear
evolution with eventual saturation of the fundamental
disturbance, leading to strong amplification of very-
high-frequency  inflectional  instabilities and
breakdown™”. In these situations, linear stability
theory must be applied with care and caution, and
other techniques such as PSEs® and DNS may be
found appropriate because they can account for non-
parallel flows, non-linear stability, non-linear
interaction of modes and mean flow distortion. At
times, the initial instability can be so strong that the
growth of linear disturbances are bypassed and
turbulent spots and secondary instabilities occur
which quickly make the flow turbulent (occur when
roughness and free-stream turbulence -are large).
Linear stability theory fails in such cases used in
transition prediction schemes. The review of BL
transition research by Mack'® is worth mentioning.

77 Special survey on transition models

The basic fluid dynamical problems associated
with the transition of laminar to turbulent boundary
layers still remain poorly understood, although the
wide recognition of scientific and technological
importance of the subject has led to extensive
research on both the experimental and analytical
front. Initially the boundary layer on any surface
remains steady and laminar up to a certain distance
from the leading edge and then it starts exhibiting
unsteady behaviour involving 2-D TS wave and 3-D
secondary instabilities further downstream as the
Reynolds number for instability increases. As the 3-D
disturbances grow, a stage is eventually reached when
the flow breaks down with the appearance of
intermittent turbulent fluctuations coinciding with
what we shall call the “onset of transition”. Several
reviews highlighting various aspects of transition
appeared in the literature”"**'% 1t is clear from these

studies that there is a lack of argument on the precise
stages in the flow development, leading to transition.
On the order in which they occur and on the factors
that influence them. No general theory could be made
to predict the process of transition. In this paper
various classes of transition models for the
computation of viscous flows are discussed.

The existing transition models for boundary layers
can be broadly classified into three categories:

(i) Linear combination®'®""
(i) Algebraic'''"'

(i) Differential”"'®.

In the linear combination models, the mean flow is
determined by combining mean laminar and turbulent
velocities in proportion determined by intermittency
Y. All models in the linear combination class require
methods for carrying the following tasks: (i)
calculation of the laminar boundary layer, (i)
estimation of mean flow parameters in fully turbulent
boundary layer starting from an arbitary station in the
flow, (iii) prediction of the location of the onset of
transition, and (iv) the intermittency distribution in
the transition zone. The methods differ only in the
manner in which the tasks are performed.

In algebraic models, the time averaged Navier
Stokes equation is taken with an appropriate algebraic
model for Reynolds stress. The turbulent viscosity is
gradually turned on in the transition zone in
proportions determined by intermittency. For
example, an effective total differential (including
viscosity) in the flow may be taken to be v=v + ¥ v;,
where vr is the eddy diffusivity. The transitional
intermittency 7y has been obtained separately, thus
requiring information on onset location and transition
zone length. Though the use of eddy viscosity can be
justified on consideration of large eddy equilibrium,
the concept suffers from the well known limitation of
all gradient transport theories. Nevertheless when
properly used, eddy viscosity can provide useful
estimate of certain boundary layer characteristics.

Differential models also directly tackled Reynolds
average equations of motion with either one- or two-
equation turbulence closure models. In the one-
equation model, the turbulent velocity scale is
determined by solving a partial differential equation
describing the transport of turbulent kinetic energy
(k) and the length scale (L) is determined from some
algebraic relations and the eddy viscosity is obtained



from g = p/k L. In the two- equation model, we solve
for the turbulent velocity and length scale by solving
the transport equation of turbulent kinetic energy and
the-sate of dissipatiomef-turbulent kineticemesgy and
the rate of dissipation of turbulent kinetic energy (9),
the so called k-£ model'>*'%. Although the prediction
of boundary layer parameters in these models does
not require any specific definition of the beginning
and end of transition, the range over which the
turbulent energy increases from initially low values to
the final turbulent values can be considered to
correspond to the transition zone. However, for
triggering transition these models require some initial
disturbance in terms of an initial profile of turbulent
energy or a source term in the energy equation.

8 Summary

A review on both the theoretical and experimental
work on the stability and structure of the
supersonic/hypersonic BLs under the influence of
adverse pressure gradient and free stream turbulence
has been presented. It has been observed that the
stability studies of the supersonic BLs have not
received adequate attention compared to its
incompressible counterpart. On comparing the two
main theoretical works in incompressible non-linear
transition it is found that the Craik’s work® involves
resonant forcing and is weakly non-linear, while
Herbert’s™® work is a non-resonant forcing (using a
detuning parameter) where resonance OCCUrs in the
secondary level with non-linear interaction (analysed
using Floquet theory but restrained to parallel flow
assumption). The staggered pattern obtained from this
1/, factor-detuning-frequency represents the N-type
breakdown of Kachnov'”. The K-type breakdown®
represents the aligned A vortices and has been
determined experimentally. No theoretical model has
been able to reproduce this type of breakdown. El-
Hardy’s breakdown (ncm-resonam62 and resonant™)
occurs in compressible supersonic flows. Gaster’s
work™* of successive approximation, leading to an
impulse response technique, is essentially non-
parallel and made weakly non-linear by further
approximation. On the other hand, the PSE
method®® is fully non-linear. Compressible BLs are
reported to have 2-D TS waves in the early part of the
development and 3-D hairpin vortices occur
downstream in staggered (commonly occurring with
large amplitudes) or aligned pattern when growth rate
is suppressed by external forcing implicitly
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(complaint coatings) or explicitly (suction, favourable
pressure gradient, cooling, etc.). Also, compressible
BLs have multiple modes of primary oscillations,
called Mack modes, which occur at supersonic Mach
numbers. A brief review of existing transition models
on supersonic BLs has also been presented.
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