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Abstract

Graphics Accelerators are increasingly used for general purpose high performance computing

applications as they provide a low cost solution to high performance computing requirements.

Intel also came out with a performance accelerator that offers a similar solution. However,

the existing application software needs to be restructured to suit to the accelerator paradigm.

Master-slave software architecture has been employed to enable two-dimensional and three-

dimensional grid-free Euler flow solvers in GPGPU computing platforms. Results showing

significant improvement in the performance are presented in this paper. Convergence histories

and aerodynamic forces obtained from GPGPU computing are compared with that of sequen-

tial computing results.
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Introduction

Applications such as Computational Fluid Dynamics

(CFD), weather prediction, chemical and nuclear reaction

modeling, etc., are highly computational intensive, owing

to the large data sets. Efforts have been made by various

researchers to reduce this computation time by paralleliz-

ing these applications on high performance computing

platforms. However, the infrastructure required for the

high performance computing platforms is not only pro-

hibitively expensive and their maintenance is also highly

arduous.

General Purpose Graphics Processing Units

(GPGPUs) provide a low cost solution to high perform-

ance computing. GPU is especially designed for problems

that are composed of data-parallel computations, that is,

same operation is performed on a large set of data elements

(SPMD) in parallel. As same program is executed on each

data element, the need for complex control statements in

the program is low.

In Data-parallel processing, each processing thread

works on a data element in parallel and application pro-

grams, which  operate on large data sets can exploit data-

parallel programming model to speed up the

computations. This is also referred to as SIMT (Single

Instruction Multiple Threads) architecture.

In 2006, NVIDIA introduced Compute Unified Device

Architecture (CUDA), a general purpose parallel comput-

ing architecture with a new parallel programming model

along with an instruction set architecture, which takes

advantage of the parallel compute engine in NVIDIA

GPUs to solve many complex computational problems in

a more efficient way than on a CPU. The general CUDA

programming model is shown schematically in Fig.1.

CUDA is enhanced with a software environment that

allows developers to program in C/C++ as a high-level

programming language. Other languages or application

programming interfaces are also supported such as CUDA

FORTRAN, OpenCL and DirectCompute.

The application programs for multi-core programs

cannot be seamlessly and transparently scaled to exploit

the increasing number of processors / cores. The main

design objective of CUDA parallel programming model is

to overcome this challenge, while offering a low learning

curve for programmers, who are familiar with standard

programming languages such as C. The GPGPU, which

executes CUDA threads, is a physically separate device

that operates as a coprocessor to the host running the main

C program. That means, the rest of the C program executes

on CPU in parallel, when the kernel is launched and
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executed on a GPU. In the present work, a well validated

indigenous grid free Euler solver is converted in CUDA

programming environment to run in GPGPU computing

platform. The results obtained from CUDA enabled grid

free code are compared against sequential code results.

CUDA Programming Model

CUDA follows load-launch-read programming

model. The initial data is loaded onto the pre-allocated

GPU device memory. The parallel computing program

called Kernel is launched. After completion of execution,

the results are read from the device memory.

The functionality which needs to execute in parallel on

the data set needs to be declared as a _global_ function and

can be specified to the compiler. The kernel shall run in

multiple threads, with each thread identified by a thread

index.

A number of threads are grouped to one block and

number of blocks into a grid. This grid can be specified as

1D, 2D or 3D depending on the data set representation of

the underlying problem. There can be multiple kernels

running simultaneously. A group of 32 threads is called a

warp and the scheduling of threads is done in warp level.

At the time of launching the kernel, it is required to

specify size of grid (number of blocks per grid) and size

of block (number of threads per block). Size of block

should be a multiple of warp, as thread scheduling is done

in warp level and should be less than maximum block size

(i.e. maximum number of threads per block which is

typically 1024). The size of the warp and maximum block

size can be queried from the device using cudaGet-

DeviceProperties( ) function. However, the configuration

(i.e. number of blocks per grid and number of threads per

block) depends highly on the load of the device and the

resources required by the kernel.

The following are some of the factors that influence

the performance of parallel program.

• Load balancing

• Race conditions

• Essential sequential computations

The effective computation time per computation node

is the time taken by the node with maximum load. Since

data synchronization is required at the end of each iteration

of computation, the nodes which are relatively less loaded

after completing the computation need to wait for the

completion of the node with the maximum load. Thus, the

total time for computation will be effectively more than

the time taken with the balanced load.

Race condition is the major challenge to be addressed

by the parallel software designer. It is the condition when

more than one thread try to access same variable and at

least one of the attempts is for write operation. In this

situation the results will be unpredictable.  In such case, it

is required to synchronize the threads that are trying to

access the same variable. If the threads are trying to access

the variable belong to the same warp, they can be synchro-

nized using _synchronizeThreads( ). This call can be

called from within the kernel or device function.

There are certain parts of computations that cannot be

computed in parallel. Such essential sequential computa-

tion part should be minimized, in order to achieve higher

performance of the parallel applications [1]. The follow-

ing are the major issues to be addressed while program-

ming with CUDA.

• Identification of suitable kernel configuration

• Coalesced access to data structure memory

In a CUDA enabled GPGPU, the processing capability

is split into Streaming Multiprocessors (SMs). The num-

ber of SMs depends on the card. Each SM has finite

number of registers, finite amount of shared memory,

maximum number of active threads per block and maxi-

mum number of active blocks per grid. These numbers

depend upon the compute capability of the GPGPU. For

example, in a GPGPU with compute capability 3.0 each

SM can have 16 active blocks and 2018 active threads. The

number of threads per block depends on the amount of

memory consumed by each thread as the memory allo-

cated per block is limited. If the number of threads per

block is too less, the occupancy of GPU will be less. If the

number of threads per block is too high, the memory may

not be sufficient and the results may be unpredictable. The

grid and block sizes are to be optimally chosen.

In a coalesced memory access, consecutive threads

access consecutive memory locations. Non coalesced ac-

cess to the data structure memory also leads to perform-

ance degradation of the application. In order to increase

the application performance,  instead of array of structures
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(Code listing 1) it was advised to use structure of arrays

(Code listing 2) in [7]. Keeping the above in view, a

grid-free Euler solver is enabled to run on a GPGPU using

CUDA. The code listing for arrays of structures and struc-

ture of arrays are shown in Fig.2.

The Grid Free Euler Solver q-LSKUM

The grid-free methods which operate on distribution

of points reduce the grid generation difficulty to a greater

extent. Further, the grid-free methods are amenable for

parallelization due to uniform and simple data structure

for even complex multi-bodies and hence it is easy to

handle relatively moving multi-bodies in a parallel envi-

ronment.

Least Squares Kinetic Upwind Method (LSKUM) is

based on the Kinetic Flux Vector Splitting (KFVS) [2][1]

scheme, which exploits the connection between the

Boltzmann equation of kinetic theory of gases and the

governing equations of fluid dynamics using a moment

method strategy. More specifically, Euler equations are

obtained by taking ψ-moments of the Boltzmann equation

with Maxwellian as velocity distribution function. In

LSKUM, the spatial derivatives of the Boltzmann equa-

tion are discretized using weighted least squares method

and the upwinding is enforced by choosing split sub-sten-

cils from the connectivity based on sign of the molecular

velocity to evaluate the spatial derivatives. Finally, taking

ψ-moments lead to LSKUM numerical scheme. The

higher order accuracy in space is achieved using a defect

correction method [3] in which the lower order spatial

errors are removed using an iterative strategy.

An improved version of LSKUM is q-LSKUM in

which the entropy variables, also called q-variables, are

used in the defect correction step to achieve higher order

accuracy in space at all points including boundary points.

The q-LSKUM also operates on arbitrary distribution of

points in the computational domain and does not require

complex grid generation effort to solve the governing

equations of fluid dynamics. Therefore, it considerably

reduces the grid generation time and also makes it possible

to obtain solutions for geometrically complex configura-

tions. The performance of the solver crucially depends

upon the quality of the connectivity (set of neighbors) to

estimate the spatial derivatives of flux vectors using least

squares method. The code has been thoroughly validated

for complex multibody aerospace vehicles flow problems

[4, 5]. The algorithmic step of the q-LSKUM grid free

method is shown in Fig.3.

The System Configuration

The q-LSKUM grid free Euler Solver was imple-

mented and tested on a cluster of computing nodes

equipped with dual GPGPUs each. The system configura-

tion consists of 8 core, dual intel Xeon CPU processor 2.0

GHz with 64 GB RAM connected through 56 Gbps infini-

band switch. Each computation node consists of two

NVIDIA Tesla K-20 series GPGPU. The configuration of

Tesla K20 GPGPU is as follows:

• Number of GPU Cores: 2688

• Memory Size: 6 GB

• Clock Speed: 0.732 GHz

• Memory Bandwidth: 250 GBps

• Performance (SP): 3.95 TFLOPS

• Performance (DP): 1.31 TFLOPS

• Max Power Usage: 235 W

Conversion of Grid-free Euler Solver Using

CUDA Programming

The problem was addressed in multiple phases. In the

first phase, a 2D Euler solver was converted to CUDA

followed by the conversion of 3D solver in the second

phase.  In the final phase, the 3D solver was converted to

MPI-CUDA, in order to solve problems with large data

sets.

CUDA Implementation of Grid-free 2D and 3D

Euler Solvers

The main data structure of 2D grid-free Euler solver is

an array of structures, as shown in Code listing 1 of Fig.2,

each structure containing node attributes and an array of

pointers to neighboring nodes. During the initialization

process, the initial data and node structure are read from a

file followed by memory allocation on the GPU device.

Before the kernel is launched on the GPU, the array of

structures is copied onto the device memory. After suc-

cessful copying of the required data, the kernel is launched

with the most appropriate configuration computed based

on the present occupancy of the GPU. Because of the

present node structure, each thread has to access various

nodes that are not contiguous in the array. In addition, this

calls for synchronization among threads of different

blocks. Hence, the code has to be divided into multiple

kernels, based on the access to the common device mem-
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ory containing the node array. The flow chart of GPGPU

implementation is shown in Fig.4.

The kernels are launched sequentially one after the

other, ensuring data synchronization between successive

kernel launches. The first kernel performs PminMod and

construct_q functions, the second kernel performs con-

struct_q_deriv function and the third kernel performs

qresidue_flux, time_step and state_update. In the present

application, some part of the code has to be essentially run

sequentially on the host leading to overall performance

degradation. However, the heterogeneous computing ca-

pability of CUDA has been successfully employed to

improve the performance of the overall application. The

essential sequential part (the aerodynamic force integra-

tion) is executed on host in parallel to the following

iteration on the GPU device.

The philosophy of CUDA program model for 3D

grid-free Euler Flow Solver is same as that of 2-D grid-free

Euler Flow Solver. The one-time computation of Least

square coefficients is also launched as a CUDA kernel

before entering into iteration loop.

MPI-CUDA Implementation of Grid-free 3D Euler

Solver

The MPI-CUDA software was tested with Generic

wing-store separation problem [6] with 7 Million data

points. In order to obtain maximum performance from

MPI-GPU version of the software, it was planned to spawn

only so many instances of software per computing node

as many GPGPU cards present in each computing node,

so that each instance can exploit one GPGPU. Remote

Direct Memory access (RDMA) [9] feature of CUDA has

been effectively exploited for data synchronization among

the computing nodes. In addition, only points in the over-

lapping region are synchronized among the nodes, thus

further reducing the communication demands.

Implementation Issues

Various implementation issues like kernel configura-

tion computation, avoiding Race conditions, essential se-

quential computations, load balancing, etc., discussed in

Section (CUDA Programming Model) are described in

detail with respect to CUDA conversion of grid free Euler

solver.

Kernel Configuration Computation

The kernel configuration is computed based on the

current load on the GPGPU due to this kernel. Exact

configuration, that can successfully launch the kernel, was

computed from the results returned by cudaOccupancy-

MaxPotentialBlockSize( ) function. The code for perform-

ing this functionality is given in Code listing 3 (Fig.5).

Avoiding Race Conditions

Race conditions were avoided by identifying sections

of the code where global shared memory was simultane-

ously accessed by multiple threads. It was identified in the

code that the global data structure was accessed for write

after construct_q and construct_q_deriv by multiple

threads simultaneously. Racing condition is explained in

Code listing 4 in Fig.6. In this case the filed qf is computed

in the first for loop and the value of qf is used in the second

for loop for computation of q derivative. If both the for

loops are executed in a single kernel, it will call for a race

condition wherein when one thread updating the value of

qf another thread may access the same field for reading to

compute the q derivative. This simultaneous access by

multiple threads for write operation leads to incorrect

results. In order to avoid race conditions the code was

divided into multiple Slaves (kernels) at those sections of

code. However, if the threads are trying to access the

variable from other blocks, they needed to be synchro-

nized using cudaSynchronizeDevice().This function can

be called from the host code only.

Addressing Essential Sequential Computations

Integration of aerodynamic forces is the essential se-

quential computation in the present problem. Here, the

heterogeneous computing capability of GPGPU has been

effectively utilized. The aerodynamic forces of i
th

 iteration

are integrated on the CPU, while the (i+1)
th

 iteration is

executed on the GPGPU. Integration of aerodynamic

forces corresponding to the last iteration is performed

sequentially after all iterations are completed.

Obtaining Load Balancing

In addition to control divergence, the problem being a

grid-free Euler Flow solver, the number of neighboring

points for different points in the grid is different and the

amount of computation is proportional to the number of

neighboring points leading to load imbalance. The CUDA

scheduler provides load balancing functionality. Though

114 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.70, No.2



finer load balancing techniques were discussed in [8], as

the application considered is highly computational inten-

sive, the relatively simpler solution provided by the

CUDA scheduler was found sufficient.

Coalesced Access to Data Structure Memory

In grid-free Euler solvers, the basic data structure is 1D

array of nodes. The neighbours of a node will not be in

consecutive locations in the array and hence achieving

coalesced access to memory is not possible. However, the

performance of the application was improved by copying

the neighboring nodes into the thread local memory (see

Code listing 4 in Fig.6) before performing computations

on the data.

Results and Discussion

Parallelization of 2-D and 3-D grid free Euler solvers

has been carried out on GPU thread of a single system and

then multiple CPUs and GPUs. The grid free solver has

been applied to 2-D and 3-D test cases to verify the

repeatability of the results of sequential and MPI version

of the codes and performance of the code on GPUs.

Results of 2D Euler Flow Solver

Both the sequential and parallel 2-D flow solvers were

used to simulate transonic flow past NACA0012 airfoil at

Mach number 0.8 and angle of attack 2° in the present

work. Simulations are carried out on two sets cloud of

points with sizes 5920 and 12240. Typical cloud of points

is shown in Fig.7. The shock wave on upper surface is

captured well by the solver. The 2D flow solver was

executed for 20,000 iterations. The aerodynamic coeffi-

cients attained steady state at 10,000 iterations and the

results from both the solvers compare exactly with each

other. The comparison of residue history is shown in Fig.8.

The residue has fallen 4 decades and they also compare

well. This demonstrates the parallel solver works correctly

and reproduces the solution that of the sequential solver.

The performance of CUDA parallel version of 2-D grid

free Euler solver for the present test case is compared with

that of sequential version running on the CPU and the

results are given in Table-1. Ts and Tp are the time taken

by sequential computation on CPU system and parallel

computation on GPU system. It can be noted that a per-

formance improvement of about 12X is obtained. With the

increase of grid point, there are no significant changes in

performance.

Similar work was carried-out using GPGPU for 2D

grid-free method for solving compressible flow problems

and was presented in [7] . For single aerofoil with 5557

points with space-filling curves a speedup of ~10X was

reported with Quadro 2000 GPU.

Results of 3D Grid Free Euler Solver

The 3-D q-LSKUM grid free solver is converted using

CUDA and applied to generic wing-store problem [6]. The

experimental results are available for this test case for

validation. The configuration consists of a 45 degree

clipped delta wing with NACA 64A010 airfoil section and

an ogive-flat plate-ogive pylon. The store consists of a

tangent-ogive forebody, clipped tangent-ogive aft-body,

and cylindrical section center-body. The store has cruci-

form fin of a 45 degree sweep clipped delta wing with

NACA 008 airfoil section. Similar to the experimental

set-up, a small gap exists between the store body and the

pylon while in carriage. As in the experimental tests, a

sting is attached to the store aft-body. The free stream

Mach number is 0.95 and angle of attack is 0°. A coarse

cloud of 42664 points are used in the simulation. Time

evolution of aerodynamic forces and moments are plotted

in Figs.9 (a) and 9(b) respectively. The results attain steady

state at 1200 iterations and the results from both solvers

compare exactly with each other. The residue has fallen 2

decades and they also compare well. The parallel version

on GPGPU has shown a performance improvement of

16.22 times over the sequential counterpart on CPU.

Results of MPI-GPU Implementation

The parallel version of 3-D q-LSKUM grid free solver

using MPI has been converted using CUDA to run on GPU

Table-1 : Performance of CUDA of 2D Grid Free Euler Solver

Sl. No. No. of Grid Points Ts Tp CUDA Config. Ts / Tp

1. 5920 599.132 48.449 Grid Size : 24

Block Size : 256

12.366

2. 12240 1235.680 104.840 Grid Size : 48

Block Size : 256

11.790
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cluster utilizing  both  CPUs and GPUs. This  code has

been applied for a store separating at transonic flow con-

dition of Mach number 0.95 and 0° angle of attack. The

grid size around wing is 1,524,939 points and around store

is 783, 836 points amounting to 2,308,775 points on the

cloud.The surface grids on the wing and store are shown

in Fig.10 and the corresponding pressure contours are

shown in Fig.11. It can be observed from Fig.11 that the

compression near wing leading edge and strong normal

shock near trailing edge are well captured by the MPI-

GPU version. It was found that the results of sequential

version of the code and CUDA version of the code are

matching up to 15th digit after decimal. The aerodynamic

force coefficients, aerodynamic moment coefficients and

residue history of MPI-GPU version exactly match with

those of MPI version.

Conclusions

2-D and 3-D grid free Euler solvers were converted

into CUDA and MPI-GPU environments. The results ob-

tained with CUDA parallel version of the software over

GPGPU were found to be identical to those of the sequen-

tial CPU version with good accuracy. The CUDA appli-

cation has demonstrated a peak performance improvement

of 16X. It can be noted that higher the amount of compu-

tation, better is the performance improvement.

It was observed that the performance of MPI-GPU

version improves with increase in amount of computation

per computation node. Though load balancing could not

be achieved at the application level, the load balancing

performed by the CUDA frame work of GPGPU produced

good results. CFD applications based on structured grid

may offer better performance improvement. Similarly

coalesced memory access may further improve the per-

formance.
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Fig.1 CUDA Programming Model

Fig.2 Code Lising (1) Array of Structures and

(2) Structure of Arrys

Fig.3 Algorithmic Step of the q-LSKUM Grid Free Method

MAY 2018 GRID FREE EULER FLOW SOLVER WITH CUDA COMPUTING 117



Fig.4 Implementation Model of 2D Euler Flow Solver

Fig.5 Code Lising for Kernel Configuration Computations

Fig.6 Code Lising  for Race Condition

Fig.7 Cloud of Points Around NACA0012 Airfoil
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Fig.8 Residue History

Fig.9 Convergence History of (a) Aerodynamic Force and

(b) Aerodynamic Moment

Fig.10 Surface Grid

Fig.11 Pressure Contours

MAY 2018 GRID FREE EULER FLOW SOLVER WITH CUDA COMPUTING 119


