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ABSTRACT

If one is to create effective corrosion inhibitors, it is ioTp

The rotating cage apparatus is used in the oil industry as tantto be able to test the effectiveness of the inhibitohelab-

a simple and effective test for corrosion. The apparatugigen

oratory using a simple experiment in a repeatable fashiberd

ates a large amount of flow induced corrosion and is used by are many experimental techniques that are well suited tdymro

researchers to design effective corrosion inhibitors. levttie
apparatus is used frequently, the fluid mechanics of thel@nob
is not well understood. Importantly, there is no correct eiddr
the shear stress profile. In this paper we study the unsteady fl
dynamics of the rotating cage problem. We consider an equiva
lent, idealized, two-dimensional problem for a Newtoniandfl
and perform high resolution simulations of the rotatingecag-
ing a vortex method. The vortex method is a particle methatl th
is well suited to complex geometries, unsteady flow and dapab
of high resolution. We present initial results of variousnsia-
tions performed at different Reynolds numbers. The sheesst
is computed and compared with currently used models.

INTRODUCTION
Oil and gas operations involve the transport of oil and gas

at high pressure and flowing at significant speeds. Oil and gas

pipelines transport a large amount of material and are lysual
of very large lengths. The flowing oil and gas can corrode the
pipelines. Frequent replacement of these pipelines isrexpe

ing high amounts of flow induced localized corrosion (FLIC).
The various experimental techniques to do this are crijicat
viewed in Schmitt and BakallL1].

The rotating cage is one such apparatus that is recommended
by several researchers as an appropriate test for corrgsion
hibitor performance under severe conditions. The appsiain-
sists of a collection of flat blades (called coupons) arrdradeng
the circumference of a cylinder. This cage of blades is place
side a cylinder filled with a viscous fluid. Fifl 1 is a sketch of
a rotating cage apparatus. The cage is rotated at high speed f
several hours. Iri]2] the test is run for 18 hours andin [3]1f20
hours. The coupons are weighed before the experimentisdtar
At the end of the experiment they are cleaned and weighed agai
The difference in weight divided by the time taken providaes a
average corrosion rate. The coupons are also inspecteallyisu
to provide an idea of the kind of corrosion that occurs.

The apparatus can also be used under high pressure and tem-
peraturel[P]. This approach is commonly referred to as thgh'h
speed autoclave test” (HSAT). The rotating cage has been suc
cessfully used in practice to develop a large number of s

sive in terms of down time and material costs. Oil companies inhibitors [4[2[3]. The important advantages of the rottage

therefore use corrosion inhibitors to reduce the amounoobe
sion. These corrosion inhibitors are usually proprietdrgmi-
cals that are added in small quantities. They significamitiuce
the amount of corrosion due to the flow.

apparatus are that it is relatively easy and inexpensivetigps
and use, it is easy to reproduce high pressure and high tamper
ture conditions, the coupons experience a very large slresss
and therefore experience severe flow conditions. Corrasion
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Figure 1. Sketch of a rotating cage apparatus.

hibitors that perform well in this apparatus always appeauer-
form well in the field.

The fluid mechanics of various other corrosion inhibitor ap-
paratuses like pipe flow, rotating cylinder electrode andne
pingement apparatus are well established. However, thémgt
cage problem is not as well studied. As explained by Schmitt a
Bakalli [1]], it is sometimes possible to relate the corrogiate to
the shear stress experienced by the coupons using the@guati

W = atP

1)

whereW is the corrosion rate, the shear stress aiagh are con-
stants depending on the flow, fluid and conditions.

If a rotating cage is spinning with angular veloci®/ and
has a radiug, then the Reynolds number of the flow is defined
as,

OR?

Re=—= (2

wherev is the kinematic viscosity of the fluid. According to
Schmitt and Bakalli[[ll] the shear stress on the coupon may be
given by,

1= 0.0791Re *3pR2Q?3 (3)

Equation [[B) is essentially based on the shear stress expe-

rienced by a rotating cylinder. One would expect that the flow

2

experienced by a coupon in a rotating cage would be similar to
that of the turbulent flow past a flat plate rather than the flow
over a rotating cylinder. This was even suggested by Dougher
et al. [4] in their work. They suggest that the correct shé&&iss
profile would be that of a flat plate and use the following equa-
tion,

(4)

wherepis the dynamic viscosity of the fluid ands the distance
from the leading edge of the coupon. This equation expldies t
severe amount of corrosion that the author$1inl[4, 3] expamim
tally observe at the leading edges of the coupons. However, i
appears that other researchéis [1] continue to use the sthess
expression arising from the flow over a rotating cylinder.

The rotating cage problem does not appear to have been
simulated numerically in the literature. As an initial atfet in
this direction, we numerically simulate the unsteady flogide
a rotating cage in this paper. We consider an idealized two-
dimensional problem of four flat plates (having zero thicdg)e
that are spinning inside a circular cylinder. The fluid isumsed
to be incompressible, single-phase and Newtonian.

We use a vortex methodl[5,[8,7, 8] for the numerical sim-
ulation. The vortex method is a particle based method and is
grid free. The vorticity field is discretized into particlésat
carry the vorticity. The evolution of the vorticity field isak
culated by tracking the vortex particles in a Lagrangiahitas.

The method is designed for unsteady flows. It is self-adaptiv
in that computational particles are only used in areas wiene
are necessary. Since there is no fixed grid, numerical @issip

is minimized. The method is well suited for high-resolutand
can handle complex geometries and moving bodies.

In this work, we use the vortex method to study the shear
stress profile along the coupon’s surface when it is sulgeicte
the flow inside a rotating cage.

It is to be noted that the fluid flow in the rotating cage is
inherently three dimensional. The two-dimensional treathin
this work is a rather gross simplification. However, it does/e
to help understand the complexities involved in the two dime
sional case. The present results also allow for an integestm-
parison between more realistic three dimensional sinuriati
The three dimensional simulation is a lot harder to perfoneh a
it is important that such computations be performed in theréu
in order to obtain a better understanding of the problem.

In the subsequent sections we provide a brief overview of
the governing equations, the numerical scheme, algoritmmds
parameters used by the vortex method. This is followed by the
results of the simulation. We simulate the problem at variou
Reynolds numbers and compare the shear stress profile that we
compute. We also show the vorticity field generated by the sim
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ulation for the different cases considered.

GOVERNING EQUATIONS

The equations we solve in the present work are the Navier-
Stokes (NS) equations in the vorticity-velocity form. Tharv
ticity @, is the curl of the velocity fieldi = curl V. For a two-
dimensional flow, only the component of the vorticity out loét
plane needs to be considered. Thuss k-curl V, wherek is
the unit vector out of the plane of the flow. If the curl of the NS
equations in primitive variables is taken we obtain theicayt-
velocity formulation.

If the fluid is incompressible, the fluid flow may be com-
pletely represented by the vorticity alone. For the flow st
bodyB, in two-dimensions, the governing differential equations
along with the boundary conditions are given by,

%—? +V - gradw = v[I?w, (5a)
divV =0, (5b)

V(F,t) & =Vg-é& on boundary o8, (5d)
V(Ft) & =Vg-& on boundary o8, (5e)

wherev is the kinematic viscosityg,"ande; are the normal and
tangential unit vectors on the boundaryBf

In the present work we employ the Random Vortex Method
(RVM) [B19,[10/8]. The RVM uses operator splitting to solve
equation[{b) in two steps during each time step. The equation
are called the advection and diffusion equations and aendjy,

Dw

o= 0, (Advection) (6a)
%_? —v20. (Diffusion) (6b)

This approach enables for a Lagrangian method of solution. |
the vortex method, the vorticity field is discretized into par-
ticles carrying it. These particles are tracked as per thmeq
tions [@). The advection equation implies that any existiog
ticity is convected along with the flow. The diffusion equati
simulates the viscous diffusion of the vorticity.

Vortex blobs and sheets

In the present work we employ two different types of parti-
cles to discretize the vorticity. Vortex sheets 9, 11] asediin a
thin region around the body called themerical layer A vortex

sheet is essentially a flat element having a vorticity stite(gjr-
culation per unit length)y, and a length). Outside the numer-
ical layer the vorticity field is discretized in the form of nex
blobs. Vortex blobs are spherically symmetric and have a-fun
tional variation of vorticity in them given bys, a circulation of

I and core-radius), that determines the extent of the blob.

In the numerical layer, the boundary layer equations are as-
sumed valid. The velocity field induced by a vortex sheet is
needed for the advection step (equat[an (6a)). If the stheoita
sheet igy, its length ish and if the sheet is parallel to theaxis
and starting at the origin then its velocity at a pdiaty) is given
as

(-y,0) 0<x<A;y<O,

(0,0) otherwise (7)

VMW—ww—{

When a sheet leaves the numerical layer it is converted into a

vortex blob such that its circulatidh=yA and its core radiu§ =

A/ More details on vortex sheets may be had froln 19, 11L]12, 8].
Outside the numerical layer vortex blobs are used to dis-

cretize the vorticity field. The vorticity in this region issd

cretized as,

N
WE) = S f(X=%)F . @)
J; s(X=X))r;

whereX;, ' are the position and circulation respectively of each
blob. & is as mentioned earlier the core-radius. The order of
the accuracy of the vortex blob method depends on the nature o
the smoothing functionfs. In the present work we use Chorin’s
blob [5], which is a second-order blob (i.e. the error inwmin
the discretization is of the ford).

For a vorticity field,w(X;t), the corresponding velocity field,
V,, can be obtained as,

N
VX t) =S Ks(X—%), (9)
jZO 5 D

whereKs is the desingularized velocity kernel. The velocity ker-
nel may itself be related t& and the Cauchy velocity kernel (the
velocity due to a point vortex) as,

-V, X
ks =Kxy)+ fo= 5Dty (10

wherex denotes convolution and = x2+y2. Thus, the veloc-
ity field corresponding to a given vorticity field can be obed
depending on the nature of the functitn
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Boundary conditions The no slip boundary condition is satisfied by releasing vor-
The far field boundary condition is automatically satisfied tex sheets on the surface of the body. In order to do this line s

since the influence of the vortex particles is by constructiero velocity over a collection of control points placed on theface

at infinity. There are two boundary conditions that are tomse e  of the body is computed. Vortex sheets are released on the sur

forced. These are the no-penetration boundary conditiathen  face of the body such that this slip velocity is nullified. €

surface of the solid body (equatidn]5d)) and the no-slipriabu taken to limit the strength of the sheetsypax. Thus, if |ug| is

ary condition (equatiori{be)). the slip velocity at a particular location thétus|/ymax] sheets
Given the discretized vorticity field in the form of vortex  ©Of strengthymaxare released, whefa] is the largest integer less

blobs and sheets one can obtain the velocity fiéldas detailed ~ thanx. The remaining amount of slip is satisfied by adding a

in the previous sub section. In general tiswill not satisfy the single sheet of suitable strength less tiyas. Thus, all vortex
no-penetration boundary condition on the boundary of théybo  Particles have their circulations boundedya,d.
B. This may be satisfied by adding a suitable potential vefocit As discussed in section , diffusion is solved by the method
field. Since the curl of the potential field is zero, it doesarftect of random walks. The random numbers are generated by using a
the vorticity field. pseudo random number generator.

The no-slip boundary condition is satisfied at each time step _ AS the particles move about due to advection and diffusion,
by releasing vorticity in the form of vortex sheets on theface it is possible for them to intersect the boundaries. Thiseesp
of the body. cially true for the diffusion step. These particles are sty

reflected using an efficient algorithin]16].
In the RVM it is often found that particles of opposite sign

Solution of advection and diffusion equations are very close to each other. If two particles of opposite sigd

Given a velocity field that satisfies the no-penetration and same magnitude of circulation are found within a radiuRef,
slip boundary conditions, the advection equation may beesbl ~ then they are annihilated. Similarly if there are two paegoof
by integrating a system of ODEs that govern the position ef th  the same sign but whose strengths are together lessythan
vortices. then they are merged such that the first moment of the varticit

The diffusion equatiod{8b) is simulated using the method of is preserved. This.has been fouqd [8] to significantly reduce
random walks[[5]. In this method the vortex particles are enad the number of particles and also improves the accuracy of the
to undergo independent random walks with their displacemen Simulations.
drawn from a Gaussian distribution having zero mean and vari More details on the method and the various algorithms are
ance ®At, whereAt is the timestep. available inl[8].

Numerical parameters

NUMERICAL METHOD There are various parameters involved in the numerical im-
The numerical implementation of the vortex method in- plementation of the RVM. These may be inter-related in otder
volves several algorithms. As seen in the previous sectien, ~ produce a few crucial and physically relevant parameters.
two main steps involved are those of advection and diffusion If the height of the numerical layer lsum then in order to
During the advection of the particles the no-penetratich o ensure that vortex blobs do not penetrate the solid surfaees
slip boundary conditions are to be satisfied. must ensure that the core radis’ hnym
The advection equatiofif6a) is solved by finding the veloc- Let the length of the solid surface hethen ifN sheets are
ity field due to the vorticity and the no-slip boundary coratit released from the surface, their lengths &re L/N, thusd =
This velocity field is used to integrate a system of ODEs descr ~ L/(NT). We therefore can say thay (NT1) < haum Now, hnum
ing the position of the particles. The numerical integnatie may itself be related to an approximate boundary layer ieigh
performed using a second order Runge-Kutta scheme. The effi-
cient computation of the velocity field due to the vortex [udes KL
is an issue. If there afd vortex blobs then a naive computation hum= \/—R_e’ (11)

of the velocity of thes&\ particles would require a®@(N?) num-
ber of computations. This is prohibitively expensive sihtean _ o _ _
be extremely large. This computation is therefore acctddr wherek is a Iengt_h scale determining a fraction of this crude
an O(N) process by using an Adaptive Fast Multipole Method ~Poundary layer height. Thus we have that
(AFMM) [L3].
In order to satisfy the no-penetration boundary condition a vRe
accelerated higher order vortex panel method[14, 15] id.use N> Tk (12)
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OnceN is known, the size of the sheet and blobs are determined.
k is clearly a length scale. One can also choose a time scale for
the time integration by limiting the distance a vortex shaiit
travel in one time step by,

cL
At =——
UN’

(13)
whereU is an approximate maximum velocity. Th@ss a time
scale.

In addition to these two parameters we also have the param-
eter ymax and the radius of annihilation and mergirig;. The
lower the value ofymax the better, however it is a good idea to
choose it such that the cell Reynolds numBey, is O(1). The
cell Reynolds number is given as,

_ Yma

- (14)

Re,

Finally, the parameteR,, Ry, for the annihilation and merging of
particles is chosen to be 0.5. If the distance between twib-par
cles is less thaf,A, then they are considered for merging and
annihilation.

Thus we have 4 parametets.C are length and time scale
parameters.ymax and k (throughA) allows us to limit the cell
Reynolds number. This ensures that all relevant physiedésc
are resolved. FinallR; andRy, are numerical parameters to help
reduce the number of particles.

RESULTS AND DISCUSSION
Simulated problem

In the present work we simulate the rotating cage problem
numerically using the vortex method. We solve an idealized
2D problem and use an incompressible, single-phase, Néwton
fluid. Fig.[2 sketches the geometry considered and the variou
quantities involved. Four coupons are used. The couporftadre
plates having zero thickness.

For the rotating cage problem the Reynolds number is usu-
ally given by equatior{2),

OR?

\

Re=

In order to make meaningful simulations we first get a rough
idea of the values dReused by the community. The fluid typi-
cally used is water (actually brine is used). We assume ag¢emp
ature of 298.16 K (25°C). The dynamic viscosity,of water at
this temperature may be taken to h8®x 10-°n?/s.

We assume typical values of various lengths toRye=
1.25L = 1,R=2inches.Q is typically in the range 50 to 2000

5

Figure 2. Simulated problem and quantities involved.

RPM. This gives us a Reynolds number range of around 5000 to
250000. This is a very large range. In this paper we resttict o
attention to values between 5000 and 50000.

At this point it is important to define non-dimensional quan-
tities relevant to the simulation. We define the Reynolds Inemm
of flow over the coupon as,

QR.L
Re = v

(15)

This is done because the flow over the coupon is effectively th
of the flow past a flat plate for which the Reynolds number is
defined as above. We also define the following non-dimenkiona
numbers,

L

IC = ﬁ’ (16)
R

lv= R’ 7)
Qt

T is clearly a non-dimensional time that indicates the nunolber
rotations a coupon makes. The other two are useful lengtisrat

Grid independence study
We start by performing a simple grid independence study.
In the present work we are interested mainly in the sheasstre
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profile along the plate. Thus we choose parameters in order to
ensure that these are captured correctly.

We considerRe = 20000 for the purposes of the study.
We assume thaR. = 0.05m, | = 0.5 andl, = 1.6. To attain
Re= 20000, from equatioll2), we hade~ 7.12rad/$68rpm.

We also clearly see th&e, = 10000. The various numerical pa-
rameters are chosen as discussed in section . We note that the
Reynolds number that is to be considere®e when choosing
these parameters. This is because the fluid flow over the osupo

is what generates the vorticity.

The parameterk andC must be chosen carefully in order
to simulate the physics correctly. We hold all other pararset
fixed and vary eithe€ or k to get the optimal parameters. Ta-
ble[d shows the various values considered for this stiM)eet
is the number of control points on which the no-slip boundary
condition is satisfied on one side of a coupon.

Case| k C | Nsheet At Ymax | Rén
la | 0.2| 22.8| 160 0.01| 0.025| 4.4
1b | 02| 11.4| 160| 0.005| 0.025| 4.4
1c | 0.2| 57| 160 0.0025| 0.025| 4.4

le-3

1.0

Figure 3. Average T on the outer surface versus X/L at different times
for case 1c.

coupons rotate by about 16 degrees). It is interesting te thatt
the curves are essentially similar. Hij. 4 plots the vaatft

2a | 04| 114 80 0.01| 0.025| 8.8
2b | 04| 57 80| 0.005| 0.025| 8.8

08| 57 40 0.01| 0.025| 17.6
4 16| 2.85 20 0.01| 0.025| 35.2

on the outer surface for the cases 1a, 1b, IE at1.53. These
curves are also time averaged oXdr = 0.28 and averaged over
all the coupons. Itis easy to see that case lais not acciitats.

it is clear that we must choo§e< 11.4. Case 1b appearsto be a
reasonable compromise between cases 1a and 1c.

Table 1. Parameters varied to obtain optimal values. Ngheetis the num-
ber of control points on which the no-slip boundary condition is satisfied
on one side of a coupon. R, is the cell Reynolds number.

In order to pick the best of these parameters we consider the
shear stress profile on the outer surface of the coupon. For al
cases in this grid independence study except case 1¢ weasenul
the problem tillIT = 5.67, i.e. each coupon has performed more
than five and a half rotations. Case 1c is simulated only ti#

1.7. This is because it takes twice as long as case 1b to execute.

We first plot the shear stress versus the length of the coupon
along the outer surface. We plot the average of the sheasstre
over all the coupons at several instants of time. The flongklki
unsteady (as we will see later) and therefore it makes §tlese
to consider instantaneous shear stresses. We therefdoerper
a time average of the data over several timesteps. Due to the
stochastic nature of the random vortex method the curveswe o
tain are a little noisy. We smooth them using a simple 7 point
sliding average.

Fig.[d plotst versusx/L for different values of T (these
are time averaged values over a periodAdf = 0.28, i.e. the

xle-3

— case la
= = caselb
------ case 1c
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Figure 5. Time averaged T on the outer surface versus X/L for cases
la,2a, 2b,3and 4 at T = 5.38.

Fig.[d plots the time averaged (0T = 0.57) shear stress  Figure 6. Vorticity and velocity vectors for Re=5000at T = 11.33
on the outer surface at= 5.38 for various different cases where  Red dots represent vorticity spinning clockwise and blue dots represent
mainly k is changing. Clearly, case 4 is not too accurate. Some- anti-clockwise vorticity.
what surprisingly, case 2b is extremely accurate. This esigg
that a lowelC value is a good idea if the leading edge stress is to
be captured accurately. However the overall stress disioib is
reasonable up to abokit=0.8.

From the results we can see that even though the flow has not
reached a steady state, that we get reasonable resultk eytd
but beyond this the results are not as accurate. Howevar,ave
larger values ok we get a good idea about the general variation
of the shear stress profile. For the subsequent simulatiens w
attempt to use as smallkeandC as would be reasonable for the
amount of computational time.

Variation of Re

We simulate the rotating cage for various Reynolds numbers.
The parameters used are given in Tdlle 2. Clearly, the choice
of parameters for th&®e= 20000 case could have been better.
We will address this in future work. THee= 40000 simulation
takes around 36 hours on a Pentium IV 3 GHz machine.

Figs.[8[T[B, anfll9 plot the vorticity field and velocity vec-
tors for the flow inside the rotating cage for various Reysold
numbers. Red dots represent vorticity spinning clockwise a
blue dots represent anti-clockwise vorticity. It is cleamh these
that betweerRe= 20000 andRe= 40000, there is a change in

behavior.Itappears that the urbuience inthe flow s fubyel-  L9E 0 e e R B R e oo
oped atRe= 40000. p ty spinning p

anti-clockwise vorticity.

b

T
[
|
L
¥
N
.
M
>
R

Fig. [I0 plots the time averaged shear stress variation ver-
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Figure 8. Vorticity and velocity vectors for Re= 20000at T = 17.05.
Red dots represent vorticity spinning clockwise and blue dots represent
anti-clockwise vorticity.

Figure 9. Vorticity and velocity vectors for Re= 40000at T = 11.33.
Red dots represent vorticity spinning clockwise and blue dots represent
anti-clockwise vorticity.

Re Q k C | Nsheet| VYmax| R&
5000| 1.78| 0.133| 85| 120| 0.025| 5.85
10000| 3.56| 0.188| 8.5 | 120 0.025| 5.85
20000| 7.12 04| 114 80 | 0.025| 8.8
25000 8.9 0.3| 5.3| 120| 0.025| 5.85
30000| 10.68| 0.325| 6.4| 120| 0.025| 5.85
35000| 12.46| 0.351| 7.5| 120| 0.025| 5.85
40000| 14.24| 0.375| 8.5| 120| 0.025| 5.85

Table 2. The parameters used for simulation of the rotating cage prob-
lem at different Reynolds numbers. Nsheetis the number of sheets re-
leased on one side of a coupon.

susx/L for various Reynolds numbers on the outer surface of
the coupons. As expected the shear stress increases with the
Reynolds number. However, there is a significant jump in the
shear stress for the Reynolds number of 40000. This alorig wit
Fig.[d clearly suggest the turbulence at this Reynolds numbe
Similarly, Fig.[T1 plots the time averaged shear stress en th
inner surface of the coupon. The behavior of the shear simess
this fashion is understandable since as the flat plate mtherg
is a component of the relative velocity that is normal to iaine
the edges. Thus, the flat plate actually behaves as if it was in
flow with a slight angle of attack.

Re=5000

Re=10000
Re=20000 |
Re=40000

z/L

Figure 10. Time averaged T on the outer surface versus X/L for various
Reynolds numbers for T > 11
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Re=5000

Re=10000
Re=20000
Re=40000

7640 0.2 0.4 0.6 0.8
z/L

Figure 11. Time averaged T on the lower surface versus X/L for various

Reynolds numbers for T > 11

Re=20000
Re=25000
Re=30000
Re=35000
Re=40000 |

z/L

Figure 13. Time averaged T on the lower surface versus X/L forat T >
11 for Reynolds number in the range 20000< Re< 40000

In order to find the Reynolds number around which the shear maximum shear stress averaged over all four coupons and also
stress dramatically increases, the time averaged shems sy time averaged ovekT = 0.72. It is clear that there is a jump in
plotted in the range 20000 Re< 40000 in Figd T2 ar[d13. The  the shear stress and a change in the slope between 20L&
figures suggest that the transition is somewhere betiRsen 25000. Itis also interesting to note that the maximum shieess
20000 to 25000. is on the upper surface while the average shear stress isrtigh

the lower surface.

Re=20000
Re=25000
Re=30000 |+
Re=35000
= = Re=40000

,xle-3

1.

T T
eeee Upper surface
4444 Lower surface

1.2

Tavg

z/L . . . . . .
/ 045 1.0 15 2.0 25 3.0 35 2.0

Re xle+4

Figure 12. Time averaged T on the outer surface versus X/L forat T >

11 for Reynolds number in the range 20000< Re< 40000 Figure 14. Average T (time averaged) on the coupons versus Re

According to the formula given in equatiolll (3) the shear
stress for various Reynolds numbers should be as shown in Ta-

Fig. [I4 plots the average shear stress over all the four
coupons, time averaged overM ~ 0.72. Fig.[Ib plots the
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0.006
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0.004;

0.002]

0.00 .5 1.0 1.5 2.0 2.5 3.0 3.5

4.0
xle+4

Figure 15. Maximum T (time averaged) on the coupons versus Re

ble[d. Approximate estimates for the maximum shear stress on
the outer and inner surfaces as computed in this work are also
shown. As seen in the various figures, the largest shear ®ccur
near the leading edge of the coupons. The computed shess stre
is consistently higher than the one predicted in equalin@ar
simulations indicate that the shear stress distributiondse like

that of a flat plate than a circular cylinder in rotation

Table 3. Comparison of shear stresses using equation (13) and compu-
tational results. Here we indicate an approximate maximum shear stress
that is computed.

Re | T (fromeq. [B))| Tcomputed(OUter) | Tcomputed(inner)
5000 5.79x 107°° 25x10°* 1.3x 104
10000 231x104 1.0x10°3 6.0x 1074
20000 9.26x10°* 25%x 1073 9.0x10*
40000 3.70x 1073 8.0x10°3 45x10°3

From these results it is clear that the fluid mechanics of this
problem is non-trivial. Several important observationa b&
made.

1. The flow over the coupons is closer to that of a flat plate
moving at a slight angle of attack in a fluid than the flow
over a rotating cylinder.

2. The shear stress is high on the upper and lower surfaces nea

with the high amount of corrosion observed at the leading
edges byl 12]3].

3. The flow at higher Reynolds numbers is highly turbulent. It
does not appear as if there is a steady state for the flow.

4. It appears that at some point between 20@Me < 25000,
the flow transitions into a turbulent regime. This may ex-
plain the dramatic increase in the shear stresses Rleen
25000.

The present results are preliminary and cannot be treated as
definitive. However, it is clear that these results providéghtly
better understanding of the fluid mechanics of the problem. |
is also clear that the existing models are inadequate. Tdrere
several interesting questions that remain unanswered.

1. What happens at even higher Reynolds numbers?

2. What is the influence of varying the parameterandly
(i.e. the length of the coupon and the radius of the vessel are
changed)?

3. What if the number of coupons is changed?

4. How relevant are these results given the two-dimensignal
of the simulations? This can be partially answered by look-
ing at available experimental results.

These and other issues will be addressed in future work.

CONCLUSIONS

In this work we use a vortex method to simulate the rotating
cage problem. The shear stresses on the surface of the @upon
are studied in some detail. The results are still prelimjinidiow-
ever, it appears that the flow over the coupons is more like the
flow past a flat plate. This explains the high amount of shear
near the leading edges. This is in agreement with the cangect
and experimental observations bf[[4. 2, 3]. The resultsinbth
indicate that the existing empirical formula for the sheaess
on the flat plates are conservative estimates.

In the future it would be important to understand the influ-
ence of varyindc, Iy and the number of coupons used. It would
be useful to increase the Reynolds number further and shely t
shear stress. The present work employs a two-dimensioral nu
merical simulation. It is very important to simulate the Iplem
in three dimensions and compare the results.
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