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ABSTRACT
The rotating cage apparatus is used in the oil industry as

a simple and effective test for corrosion. The apparatus gener-
ates a large amount of flow induced corrosion and is used by
researchers to design effective corrosion inhibitors. While the
apparatus is used frequently, the fluid mechanics of the problem
is not well understood. Importantly, there is no correct model for
the shear stress profile. In this paper we study the unsteady fluid
dynamics of the rotating cage problem. We consider an equiva-
lent, idealized, two-dimensional problem for a Newtonian fluid
and perform high resolution simulations of the rotating cage us-
ing a vortex method. The vortex method is a particle method that
is well suited to complex geometries, unsteady flow and capable
of high resolution. We present initial results of various simula-
tions performed at different Reynolds numbers. The shear stress
is computed and compared with currently used models.

INTRODUCTION
Oil and gas operations involve the transport of oil and gas

at high pressure and flowing at significant speeds. Oil and gas
pipelines transport a large amount of material and are usually
of very large lengths. The flowing oil and gas can corrode the
pipelines. Frequent replacement of these pipelines is expen-
sive in terms of down time and material costs. Oil companies
therefore use corrosion inhibitors to reduce the amount of corro-
sion. These corrosion inhibitors are usually proprietary chemi-
cals that are added in small quantities. They significantly reduce
the amount of corrosion due to the flow.

If one is to create effective corrosion inhibitors, it is impor-
tant to be able to test the effectiveness of the inhibitor in the lab-
oratory using a simple experiment in a repeatable fashion. There
are many experimental techniques that are well suited to produc-
ing high amounts of flow induced localized corrosion (FLIC).
The various experimental techniques to do this are critically re-
viewed in Schmitt and Bakalli [1].

The rotating cage is one such apparatus that is recommended
by several researchers as an appropriate test for corrosionin-
hibitor performance under severe conditions. The apparatus con-
sists of a collection of flat blades (called coupons) arranged along
the circumference of a cylinder. This cage of blades is placed in-
side a cylinder filled with a viscous fluid. Fig. 1 is a sketch of
a rotating cage apparatus. The cage is rotated at high speed for
several hours. In [2] the test is run for 18 hours and in [3] for120
hours. The coupons are weighed before the experiment is started.
At the end of the experiment they are cleaned and weighed again.
The difference in weight divided by the time taken provides an
average corrosion rate. The coupons are also inspected visually
to provide an idea of the kind of corrosion that occurs.

The apparatus can also be used under high pressure and tem-
perature [2]. This approach is commonly referred to as the “high
speed autoclave test” (HSAT). The rotating cage has been suc-
cessfully used in practice to develop a large number of corrosion
inhibitors [4,2,3]. The important advantages of the rotating cage
apparatus are that it is relatively easy and inexpensive to setup
and use, it is easy to reproduce high pressure and high tempera-
ture conditions, the coupons experience a very large shear stress
and therefore experience severe flow conditions. Corrosionin-
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Figure 1. Sketch of a rotating cage apparatus.

hibitors that perform well in this apparatus always appear to per-
form well in the field.

The fluid mechanics of various other corrosion inhibitor ap-
paratuses like pipe flow, rotating cylinder electrode and jet im-
pingement apparatus are well established. However, the rotating
cage problem is not as well studied. As explained by Schmitt and
Bakalli [1], it is sometimes possible to relate the corrosion rate to
the shear stress experienced by the coupons using the equation,

W = aτb (1)

whereW is the corrosion rate,τ the shear stress anda,b are con-
stants depending on the flow, fluid and conditions.

If a rotating cage is spinning with angular velocityΩ and
has a radiusRc, then the Reynolds number of the flow is defined
as,

Re=
ΩR2

c

ν
(2)

whereν is the kinematic viscosity of the fluid. According to
Schmitt and Bakalli [1] the shear stress on the coupon may be
given by,

τ = 0.0791Re−0.3ρR2
cΩ2.3 (3)

Equation (3) is essentially based on the shear stress expe-
rienced by a rotating cylinder. One would expect that the flow

experienced by a coupon in a rotating cage would be similar to
that of the turbulent flow past a flat plate rather than the flow
over a rotating cylinder. This was even suggested by Dougherty
et al. [4] in their work. They suggest that the correct shear stress
profile would be that of a flat plate and use the following equa-
tion,

τ =
3

9.28

√

ρµΩRc

x
, (4)

whereµ is the dynamic viscosity of the fluid andx is the distance
from the leading edge of the coupon. This equation explains the
severe amount of corrosion that the authors in [4, 3] experimen-
tally observe at the leading edges of the coupons. However, it
appears that other researchers [1] continue to use the shearstress
expression arising from the flow over a rotating cylinder.

The rotating cage problem does not appear to have been
simulated numerically in the literature. As an initial attempt in
this direction, we numerically simulate the unsteady flow inside
a rotating cage in this paper. We consider an idealized two-
dimensional problem of four flat plates (having zero thickness)
that are spinning inside a circular cylinder. The fluid is assumed
to be incompressible, single-phase and Newtonian.

We use a vortex method [5, 6, 7, 8] for the numerical sim-
ulation. The vortex method is a particle based method and is
grid free. The vorticity field is discretized into particlesthat
carry the vorticity. The evolution of the vorticity field is cal-
culated by tracking the vortex particles in a Lagrangian fashion.
The method is designed for unsteady flows. It is self-adaptive
in that computational particles are only used in areas wherethey
are necessary. Since there is no fixed grid, numerical dissipation
is minimized. The method is well suited for high-resolutionand
can handle complex geometries and moving bodies.

In this work, we use the vortex method to study the shear
stress profile along the coupon’s surface when it is subjected to
the flow inside a rotating cage.

It is to be noted that the fluid flow in the rotating cage is
inherently three dimensional. The two-dimensional treatment in
this work is a rather gross simplification. However, it does serve
to help understand the complexities involved in the two dimen-
sional case. The present results also allow for an interesting com-
parison between more realistic three dimensional simulations.
The three dimensional simulation is a lot harder to perform and
it is important that such computations be performed in the future
in order to obtain a better understanding of the problem.

In the subsequent sections we provide a brief overview of
the governing equations, the numerical scheme, algorithmsand
parameters used by the vortex method. This is followed by the
results of the simulation. We simulate the problem at various
Reynolds numbers and compare the shear stress profile that we
compute. We also show the vorticity field generated by the sim-
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ulation for the different cases considered.

GOVERNING EQUATIONS
The equations we solve in the present work are the Navier-

Stokes (NS) equations in the vorticity-velocity form. The vor-
ticity ~ω, is the curl of the velocity field,~ω = curl~V. For a two-
dimensional flow, only the component of the vorticity out of the
plane needs to be considered. Thus,ω = k̂ · curl ~V, wherek̂ is
the unit vector out of the plane of the flow. If the curl of the NS
equations in primitive variables is taken we obtain the vorticity-
velocity formulation.

If the fluid is incompressible, the fluid flow may be com-
pletely represented by the vorticity alone. For the flow pasta
bodyB, in two-dimensions, the governing differential equations
along with the boundary conditions are given by,

∂ω
∂t

+~V · gradω = ν∇2ω, (5a)

div ~V = 0, (5b)

ω(~r,0) = ω0(~r), (5c)

~V(~r,t) · ên =~VB · ên on boundary ofB, (5d)

~V(~r,t) · ês =~VB · ês on boundary ofB, (5e)

whereν is the kinematic viscosity, ˆen andês are the normal and
tangential unit vectors on the boundary ofB.

In the present work we employ the Random Vortex Method
(RVM) [5, 9, 10, 8]. The RVM uses operator splitting to solve
equation (5) in two steps during each time step. The equations
are called the advection and diffusion equations and are given by,

Dω
Dt

= 0, (Advection) (6a)

∂ω
∂t

= ν∇2ω. (Diffusion) (6b)

This approach enables for a Lagrangian method of solution. In
the vortex method, the vorticity fieldω is discretized into par-
ticles carrying it. These particles are tracked as per the equa-
tions (6). The advection equation implies that any existingvor-
ticity is convected along with the flow. The diffusion equation
simulates the viscous diffusion of the vorticity.

Vortex blobs and sheets
In the present work we employ two different types of parti-

cles to discretize the vorticity. Vortex sheets [9,11] are used in a
thin region around the body called thenumerical layer. A vortex

sheet is essentially a flat element having a vorticity strength (cir-
culation per unit length),γ, and a length,λ. Outside the numer-
ical layer the vorticity field is discretized in the form of vortex
blobs. Vortex blobs are spherically symmetric and have a func-
tional variation of vorticity in them given byfδ, a circulation of
Γ and core-radius,δ, that determines the extent of the blob.

In the numerical layer, the boundary layer equations are as-
sumed valid. The velocity field induced by a vortex sheet is
needed for the advection step (equation (6a)). If the strength of a
sheet isγ, its length isλ and if the sheet is parallel to thex-axis
and starting at the origin then its velocity at a point(x,y) is given
as

~V(x,y) = (u,v) =

{

(−γ,0) 0 < x < λ ; y < 0,
(0,0) otherwise.

(7)

When a sheet leaves the numerical layer it is converted into a
vortex blob such that its circulationΓ = γλ and its core radiusδ =
λ/π. More details on vortex sheets may be had from [9,11,12,8].

Outside the numerical layer vortex blobs are used to dis-
cretize the vorticity field. The vorticity in this region is dis-
cretized as,

ω(~x) =
N

∑
j=0

fδ(~x−~x j)Γ j . (8)

where~x j , Γ j are the position and circulation respectively of each
blob. δ is as mentioned earlier the core-radius. The order of
the accuracy of the vortex blob method depends on the nature of
the smoothing function,fδ. In the present work we use Chorin’s
blob [5], which is a second-order blob (i.e. the error involved in
the discretization is of the formδ2).

For a vorticity field,ω(~x,t), the corresponding velocity field,
~Vω can be obtained as,

~Vω(~x,t) =
N

∑
j=0

Kδ(~x−~x j)Γ j , (9)

whereKδ is the desingularized velocity kernel. The velocity ker-
nel may itself be related tofδ and the Cauchy velocity kernel (the
velocity due to a point vortex) as,

Kδ = K(x,y)∗ fδ =
(−y,x)
2πr2 ∗ fδ, (10)

where∗ denotes convolution andr2 = x2 + y2. Thus, the veloc-
ity field corresponding to a given vorticity field can be obtained
depending on the nature of the functionfδ.
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Boundary conditions
The far field boundary condition is automatically satisfied

since the influence of the vortex particles is by construction zero
at infinity. There are two boundary conditions that are to be en-
forced. These are the no-penetration boundary condition onthe
surface of the solid body (equation (5d)) and the no-slip bound-
ary condition (equation (5e)).

Given the discretized vorticity field in the form of vortex
blobs and sheets one can obtain the velocity field,~Vω as detailed
in the previous sub section. In general this~Vω will not satisfy the
no-penetration boundary condition on the boundary of the body
B. This may be satisfied by adding a suitable potential velocity
field. Since the curl of the potential field is zero, it does notaffect
the vorticity field.

The no-slip boundary condition is satisfied at each time step
by releasing vorticity in the form of vortex sheets on the surface
of the body.

Solution of advection and diffusion equations
Given a velocity field that satisfies the no-penetration and

slip boundary conditions, the advection equation may be solved
by integrating a system of ODEs that govern the position of the
vortices.

The diffusion equation (6b) is simulated using the method of
random walks [5]. In this method the vortex particles are made
to undergo independent random walks with their displacement
drawn from a Gaussian distribution having zero mean and vari-
ance 2ν∆t, where∆t is the timestep.

NUMERICAL METHOD
The numerical implementation of the vortex method in-

volves several algorithms. As seen in the previous section,the
two main steps involved are those of advection and diffusion.
During the advection of the particles the no-penetration and no-
slip boundary conditions are to be satisfied.

The advection equation (6a) is solved by finding the veloc-
ity field due to the vorticity and the no-slip boundary condition.
This velocity field is used to integrate a system of ODEs describ-
ing the position of the particles. The numerical integration is
performed using a second order Runge-Kutta scheme. The effi-
cient computation of the velocity field due to the vortex particles
is an issue. If there areN vortex blobs then a naive computation
of the velocity of theseN particles would require anO(N2) num-
ber of computations. This is prohibitively expensive sinceN can
be extremely large. This computation is therefore accelerated to
an O(N) process by using an Adaptive Fast Multipole Method
(AFMM) [13].

In order to satisfy the no-penetration boundary condition an
accelerated higher order vortex panel method [14,15] is used.

The no slip boundary condition is satisfied by releasing vor-
tex sheets on the surface of the body. In order to do this, the slip
velocity over a collection of control points placed on the surface
of the body is computed. Vortex sheets are released on the sur-
face of the body such that this slip velocity is nullified. Care is
taken to limit the strength of the sheets byγmax. Thus, if |us| is
the slip velocity at a particular location then⌈|us|/γmax⌉ sheets
of strengthγmax are released, where⌈x⌉ is the largest integer less
thanx. The remaining amount of slip is satisfied by adding a
single sheet of suitable strength less thanγmax. Thus, all vortex
particles have their circulations bounded byγmaxλ.

As discussed in section , diffusion is solved by the method
of random walks. The random numbers are generated by using a
pseudo random number generator.

As the particles move about due to advection and diffusion,
it is possible for them to intersect the boundaries. This espe-
cially true for the diffusion step. These particles are specularly
reflected using an efficient algorithm [16].

In the RVM it is often found that particles of opposite sign
are very close to each other. If two particles of opposite sign and
same magnitude of circulation are found within a radius ofRaλ,
then they are annihilated. Similarly if there are two particles of
the same sign but whose strengths are together less thanγmax,
then they are merged such that the first moment of the vorticity
is preserved. This has been found [8] to significantly reduces
the number of particles and also improves the accuracy of the
simulations.

More details on the method and the various algorithms are
available in [8].

Numerical parameters
There are various parameters involved in the numerical im-

plementation of the RVM. These may be inter-related in orderto
produce a few crucial and physically relevant parameters.

If the height of the numerical layer ishnum, then in order to
ensure that vortex blobs do not penetrate the solid surfaceswe
must ensure that the core radiusδ ≤ hnum.

Let the length of the solid surface beL, then ifN sheets are
released from the surface, their lengths areλ = L/N, thusδ =
L/(Nπ). We therefore can say thatL/(Nπ) ≤ hnum. Now, hnum

may itself be related to an approximate boundary layer height as,

hnum=
kL√
Re

, (11)

wherek is a length scale determining a fraction of this crude
boundary layer height. Thus we have that

N ≥
√

Re
πk

(12)
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OnceN is known, the size of the sheet and blobs are determined.
k is clearly a length scale. One can also choose a time scale for
the time integration by limiting the distance a vortex sheetwill
travel in one time step by,

∆t =
CL
UN

, (13)

whereU is an approximate maximum velocity. ThusC is a time
scale.

In addition to these two parameters we also have the param-
eter γmax and the radius of annihilation and merging,Ra. The
lower the value ofγmax, the better, however it is a good idea to
choose it such that the cell Reynolds numberReh, is O(1). The
cell Reynolds number is given as,

Reh =
γmaxλ

ν
(14)

Finally, the parameterRa,Rm for the annihilation and merging of
particles is chosen to be 0.5. If the distance between two parti-
cles is less thanRaλ, then they are considered for merging and
annihilation.

Thus we have 4 parameters.k, C are length and time scale
parameters.γmax and k (throughλ) allows us to limit the cell
Reynolds number. This ensures that all relevant physical scales
are resolved. FinallyRa andRm are numerical parameters to help
reduce the number of particles.

RESULTS AND DISCUSSION
Simulated problem

In the present work we simulate the rotating cage problem
numerically using the vortex method. We solve an idealized
2D problem and use an incompressible, single-phase, Newtonian
fluid. Fig. 2 sketches the geometry considered and the various
quantities involved. Four coupons are used. The coupons areflat
plates having zero thickness.

For the rotating cage problem the Reynolds number is usu-
ally given by equation (2),

Re=
ΩR2

c

ν

In order to make meaningful simulations we first get a rough
idea of the values ofReused by the community. The fluid typi-
cally used is water (actually brine is used). We assume a temper-
ature of 298.16 K (25°C). The dynamic viscosity,ν, of water at
this temperature may be taken to be 0.89×10−6m2/s.

We assume typical values of various lengths to beRc =
1.25,L = 1,R= 2 inches.Ω is typically in the range 50 to 2000

L

R

Ω

Rc

Figure 2. Simulated problem and quantities involved.

RPM. This gives us a Reynolds number range of around 5000 to
250000. This is a very large range. In this paper we restrict our
attention to values between 5000 and 50000.

At this point it is important to define non-dimensional quan-
tities relevant to the simulation. We define the Reynolds number
of flow over the coupon as,

Rec =
ΩRcL

ν
. (15)

This is done because the flow over the coupon is effectively that
of the flow past a flat plate for which the Reynolds number is
defined as above. We also define the following non-dimensional
numbers,

lc =
L
Rc

, (16)

lv =
R
Rc

, (17)

T =
Ωt
2π

. (18)

T is clearly a non-dimensional time that indicates the numberof
rotations a coupon makes. The other two are useful length ratios.

Grid independence study
We start by performing a simple grid independence study.

In the present work we are interested mainly in the shear stress
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profile along the plate. Thus we choose parameters in order to
ensure that these are captured correctly.

We considerRe= 20000 for the purposes of the study.
We assume thatRc = 0.05m, lc = 0.5 and lv = 1.6. To attain
Re= 20000, from equation (2), we haveΩ ≈ 7.12rad/s(68rpm).
We also clearly see thatRec = 10000. The various numerical pa-
rameters are chosen as discussed in section . We note that the
Reynolds number that is to be considered isRec when choosing
these parameters. This is because the fluid flow over the coupons
is what generates the vorticity.

The parametersk andC must be chosen carefully in order
to simulate the physics correctly. We hold all other parameters
fixed and vary eitherC or k to get the optimal parameters. Ta-
ble 1 shows the various values considered for this study.Nsheet

is the number of control points on which the no-slip boundary
condition is satisfied on one side of a coupon.

Case k C Nsheet ∆t γmax Reh

1a 0.2 22.8 160 0.01 0.025 4.4

1b 0.2 11.4 160 0.005 0.025 4.4

1c 0.2 5.7 160 0.0025 0.025 4.4

2a 0.4 11.4 80 0.01 0.025 8.8

2b 0.4 5.7 80 0.005 0.025 8.8

3 0.8 5.7 40 0.01 0.025 17.6

4 1.6 2.85 20 0.01 0.025 35.2

Table 1. Parameters varied to obtain optimal values. Nsheet is the num-

ber of control points on which the no-slip boundary condition is satisfied

on one side of a coupon. Reh is the cell Reynolds number.

In order to pick the best of these parameters we consider the
shear stress profile on the outer surface of the coupon. For all
cases in this grid independence study except case 1c we simulate
the problem tillT = 5.67, i.e. each coupon has performed more
than five and a half rotations. Case 1c is simulated only tillT =
1.7. This is because it takes twice as long as case 1b to execute.

We first plot the shear stress versus the length of the coupon
along the outer surface. We plot the average of the shear stress
over all the coupons at several instants of time. The flow is highly
unsteady (as we will see later) and therefore it makes littlesense
to consider instantaneous shear stresses. We therefore perform
a time average of the data over several timesteps. Due to the
stochastic nature of the random vortex method the curves we ob-
tain are a little noisy. We smooth them using a simple 7 point
sliding average.

Fig. 3 plotsτ versusx/L for different values of T (these
are time averaged values over a period of∆T = 0.28, i.e. the

0.0 0.2 0.4 0.6 0.8 1.0

L/x
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5

6

7

τ

x1e-3

T=0.51
T=1.02
T=1.53

Figure 3. Average τ on the outer surface versus x/L at different times

for case 1c.

coupons rotate by about 16 degrees). It is interesting to note that
the curves are essentially similar. Fig. 4 plots the variation of τ
on the outer surface for the cases 1a, 1b, 1c atT = 1.53. These
curves are also time averaged over∆T = 0.28 and averaged over
all the coupons. It is easy to see that case 1a is not accurate.Thus
it is clear that we must chooseC≤ 11.4. Case 1b appears to be a
reasonable compromise between cases 1a and 1c.
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case 1a
case 1b
case 1c

Figure 4. Average τ on the outer surface versus x/L for cases 1a, 1b,

and 1c at T = 1.53.
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Figure 5. Time averaged τ on the outer surface versus x/L for cases

1a, 2a, 2b, 3 and 4 at T = 5.38.

Fig. 5 plots the time averaged (over∆T = 0.57) shear stress
on the outer surface atT = 5.38 for various different cases where
mainly k is changing. Clearly, case 4 is not too accurate. Some-
what surprisingly, case 2b is extremely accurate. This suggests
that a lowerC value is a good idea if the leading edge stress is to
be captured accurately. However the overall stress distribution is
reasonable up to aboutk = 0.8.

From the results we can see that even though the flow has not
reached a steady state, that we get reasonable results up tok= 0.4
but beyond this the results are not as accurate. However, even at
larger values ofk we get a good idea about the general variation
of the shear stress profile. For the subsequent simulations we
attempt to use as small ak andC as would be reasonable for the
amount of computational time.

Variation of Re
We simulate the rotating cage for various Reynolds numbers.

The parameters used are given in Table 2. Clearly, the choice
of parameters for theRe= 20000 case could have been better.
We will address this in future work. TheRe= 40000 simulation
takes around 36 hours on a Pentium IV 3 GHz machine.

Figs. 6, 7, 8, and 9 plot the vorticity field and velocity vec-
tors for the flow inside the rotating cage for various Reynolds
numbers. Red dots represent vorticity spinning clockwise and
blue dots represent anti-clockwise vorticity. It is clear from these
that betweenRe= 20000 andRe= 40000, there is a change in
behavior. It appears that the turbulence in the flow is fully devel-
oped atRe= 40000.

Fig. 10 plots the time averaged shear stress variation ver-

Figure 6. Vorticity and velocity vectors for Re= 5000at T = 11.33.

Red dots represent vorticity spinning clockwise and blue dots represent

anti-clockwise vorticity.

Figure 7. Vorticity and velocity vectors for Re= 10000at T = 11.33.

Red dots represent vorticity spinning clockwise and blue dots represent

anti-clockwise vorticity.
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Figure 8. Vorticity and velocity vectors for Re= 20000at T = 17.05.

Red dots represent vorticity spinning clockwise and blue dots represent

anti-clockwise vorticity.

Figure 9. Vorticity and velocity vectors for Re= 40000at T = 11.33.

Red dots represent vorticity spinning clockwise and blue dots represent

anti-clockwise vorticity.

Re Ω k C Nsheet γmax Reh

5000 1.78 0.133 8.5 120 0.025 5.85

10000 3.56 0.188 8.5 120 0.025 5.85

20000 7.12 0.4 11.4 80 0.025 8.8

25000 8.9 0.3 5.3 120 0.025 5.85

30000 10.68 0.325 6.4 120 0.025 5.85

35000 12.46 0.351 7.5 120 0.025 5.85

40000 14.24 0.375 8.5 120 0.025 5.85

Table 2. The parameters used for simulation of the rotating cage prob-

lem at different Reynolds numbers. Nsheet is the number of sheets re-

leased on one side of a coupon.

susx/L for various Reynolds numbers on the outer surface of
the coupons. As expected the shear stress increases with the
Reynolds number. However, there is a significant jump in the
shear stress for the Reynolds number of 40000. This along with
Fig. 9 clearly suggest the turbulence at this Reynolds number.

Similarly, Fig. 11 plots the time averaged shear stress on the
inner surface of the coupon. The behavior of the shear stressin
this fashion is understandable since as the flat plate moves,there
is a component of the relative velocity that is normal to it near
the edges. Thus, the flat plate actually behaves as if it was ina
flow with a slight angle of attack.
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Figure 10. Time averaged τ on the outer surface versus x/L for various

Reynolds numbers for T > 11.
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Re=10000
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Figure 11. Time averaged τ on the lower surface versus x/L for various

Reynolds numbers for T > 11.

In order to find the Reynolds number around which the shear
stress dramatically increases, the time averaged shear stress is
plotted in the range 20000≤ Re≤ 40000 in Figs. 12 and 13. The
figures suggest that the transition is somewhere betweenRe=
20000 to 25000.
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Figure 12. Time averaged τ on the outer surface versus x/L for at T >
11 for Reynolds number in the range 20000≤ Re≤ 40000.

Fig. 14 plots the average shear stress over all the four
coupons, time averaged over a∆T ≈ 0.72. Fig. 15 plots the
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Re=20000
Re=25000
Re=30000
Re=35000
Re=40000

Figure 13. Time averaged τ on the lower surface versus x/L for at T >
11 for Reynolds number in the range 20000≤ Re≤ 40000.

maximum shear stress averaged over all four coupons and also
time averaged over∆T ≈ 0.72. It is clear that there is a jump in
the shear stress and a change in the slope between 20000≤ Re≤
25000. It is also interesting to note that the maximum shear stress
is on the upper surface while the average shear stress is higher on
the lower surface.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

eR x1e+4
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Figure 14. Average τ (time averaged) on the coupons versus Re.

According to the formula given in equation (3) the shear
stress for various Reynolds numbers should be as shown in Ta-
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Figure 15. Maximum τ (time averaged) on the coupons versus Re.

ble 3. Approximate estimates for the maximum shear stress on
the outer and inner surfaces as computed in this work are also
shown. As seen in the various figures, the largest shear occurs
near the leading edge of the coupons. The computed shear stress
is consistently higher than the one predicted in equation (3). Our
simulations indicate that the shear stress distribution ismore like
that of a flat plate than a circular cylinder in rotation

Table 3. Comparison of shear stresses using equation (3) and compu-

tational results. Here we indicate an approximate maximum shear stress

that is computed.

Re τ (from eq. (3)) τcomputed(outer) τcomputed(inner)

5000 5.79×10−5 2.5×10−4 1.3×10−4

10000 2.31×10−4 1.0×10−3 6.0×10−4

20000 9.26×10−4 2.5×10−3 9.0×10−4

40000 3.70×10−3 8.0×10−3 4.5×10−3

From these results it is clear that the fluid mechanics of this
problem is non-trivial. Several important observations can be
made.

1. The flow over the coupons is closer to that of a flat plate
moving at a slight angle of attack in a fluid than the flow
over a rotating cylinder.

2. The shear stress is high on the upper and lower surfaces near
the leading edge. These values appear consistently higher
than the values predicted by equation (3) as suggested by
Schmitt and Bakalli [1]. These results are in good agreement

with the high amount of corrosion observed at the leading
edges by [4,2,3].

3. The flow at higher Reynolds numbers is highly turbulent. It
does not appear as if there is a steady state for the flow.

4. It appears that at some point between 20000< Re< 25000,
the flow transitions into a turbulent regime. This may ex-
plain the dramatic increase in the shear stresses whenRe≥
25000.

The present results are preliminary and cannot be treated as
definitive. However, it is clear that these results provide aslightly
better understanding of the fluid mechanics of the problem. It
is also clear that the existing models are inadequate. Thereare
several interesting questions that remain unanswered.

1. What happens at even higher Reynolds numbers?
2. What is the influence of varying the parameterslc and lv

(i.e. the length of the coupon and the radius of the vessel are
changed)?

3. What if the number of coupons is changed?
4. How relevant are these results given the two-dimensionality

of the simulations? This can be partially answered by look-
ing at available experimental results.

These and other issues will be addressed in future work.

CONCLUSIONS
In this work we use a vortex method to simulate the rotating

cage problem. The shear stresses on the surface of the coupons
are studied in some detail. The results are still preliminary. How-
ever, it appears that the flow over the coupons is more like the
flow past a flat plate. This explains the high amount of shear
near the leading edges. This is in agreement with the conjecture
and experimental observations of [4, 2, 3]. The results obtained
indicate that the existing empirical formula for the shear stress
on the flat plates are conservative estimates.

In the future it would be important to understand the influ-
ence of varyinglc, lv and the number of coupons used. It would
be useful to increase the Reynolds number further and study the
shear stress. The present work employs a two-dimensional nu-
merical simulation. It is very important to simulate the problem
in three dimensions and compare the results.
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