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Abstract

In this paper, the Entropically Damped Artificial Compressibility (EDAC)
formulation of Clausen (2013) is used in the context of the Smoothed Parti-
cle Hydrodynamics (SPH) method for the simulation of incompressible flu-
ids. Traditionally, weakly-compressible SPH (WCSPH) formulations have
employed artificial compressiblity to simulate incompressible fluids. EDAC
is an alternative to the artificial compressiblity scheme wherein a pressure
evolution equation is solved in lieu of coupling the fluid density to the pressure
by an equation of state. The method is explicit and is easy to incorporate
into existing SPH solvers using the WCSPH formulation. This is demon-
strated by coupling the EDAC scheme with the recently proposed Transport
Velocity Formulation (TVF) of Adami et al. (2013). The method works for
both internal flows and for flows with a free surface (a drawback of the TVF
scheme). Several benchmark problems are considered to evaluate the pro-
posed scheme and it is found that the EDAC scheme gives results that are as
good or sometimes better than those produced by the TVF or standard WC-
SPH. The scheme is robust and produces smooth pressure distributions and
does not require the use of an artificial viscosity in the momentum equation
although using some artificial viscosity is beneficial.
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1. Introduction

The Smoothed Particle Hydrodynamics (SPH) technique was initially de-
veloped for astrophysical problems independently by Lucy [I], and Gingold
and Monaghan [2]. The method is grid-free and self-adaptive. With the
introduction of the weakly-compressible SPH scheme (WCSPH) by Mon-
aghan [3], the SPH method has been extensively applied to incompressible
fluid flow and free-surface problems (see [4] and [5] for a recent review with
an emphasis on the application of SPH to industrial fluid flow problems).
Alternative to the WCSPH approach, pressure-based implicit SPH schemes
like the projection-SPH [6] and incompressible-SPH [7] have also been in-
troduced. These methods force the incompressiblity constraint (V - u = 0)
by solving a pressure-Poisson equation. While generally considered to be
more accurate, the implicit nature of these schemes makes it difficult to im-
plement and parallelize which has lead to the WCSPH approach garnering
favor within the SPH community.

The weakly-compressible formulation relies on a stiff equation of state
(usually referred as the Tait’s equation of state in the SPH literature) that
generates large pressure changes for small density variations. A consequence
is that the large pressure oscillations need to be damped out, which neces-
sitate the use of some form of artificial viscosity. Another problem with the
WCSPH formulation is the appearance of void regions and particle clump-
ing, especially where the pressure is negative. This has resulted in some
researchers using problem-specific background pressure values to mitigate
this problem. The Transport Velocity Formulation (TVF) of Adami et al.
[8] ameliorates some of the above issues by ensuring a more homogeneous
distribution of particles by introducing a background pressure field. This
background pressure is not tuned to any particular problem. In addition, the
particles are moved using an advection (transport) velocity instead of the ac-
tual velocity. The advection velocity differs from the momentum velocity by
the constant background pressure. The motion induced by the background
pressure is corrected by introducing an additional stress term in the momen-
tum equation. The stiffness of the state equation is reduced by using a value
of v =1 in the equation of state in contrast to the traditionally chosen value
of v = 7. The scheme produces excellent results for internal flows and virtu-
ally eliminates particle clumping and void regions. The scheme also displays
reduced pressure oscillations. Unfortunately, the scheme does not work for
free-surface flows and this is a significant disadvantage.



The Entropically Damped Artificially Compressible (EDAC) method of
Clausen [9, [10] is an alternative to the artificial compressibility used by the
weakly-compressible formulation. This method is similar to the kinetically
reduced local Navier-Stokes method presented in [11, 12} 13]. However, the
EDAC scheme uses the pressure instead of the grand potential as the ther-
modynamic variable and this simplifies the resulting equations. The EDAC
scheme does not rely on an equation of state that relates pressure to density.
Instead, an evolution equation for the pressure is derived based on thermody-
namic considerations. This equation includes a damping term for the pressure
which reduces pressure oscillations significantly. The scheme in its original
form does not introduce any new parameters into the simulation. There is
also no need to introduce an artificial viscosity in the momentum equation.
The method has been tested in finite-difference [9] and finite-element [10]
schemes and appears to produce good results.

In this work, the EDAC method is applied to SPH for the simulation of
incompressible fluids for both internal and free-surface problems. The mo-
tivation for this work arose from the encouraging (despite a relatively naive
implementation) results presented in [I4]. In that work, we found that a sim-
ple application of the EDAC scheme produced results that were better than
the standard WCSPH, though not better than those of the TVFE scheme.
Upon further investigation, it was found that when the background pressure
used in the TVF formulation is set to zero, the EDAC scheme outperforms
it. This is because the EDAC scheme provides a smoother pressure distribu-
tion than that which is obtained via the equation of state. There is still no
mechanism within the EDAC framework to ensure a uniform distribution of
particles however. Therefore, we adapted the TVF scheme to be used along
with EDAC. The resulting scheme produces very good results and outper-
forms the standard TVF for many of the benchmark problems considered in
this work.

The proposed EDAC scheme thus comes in two flavors. For internal
flows, a formulation based on the TVF is employed where a background
pressure is added. This background pressure ensures a homogeneous particle
distribution. For free-surface flows, a straight-forward formulation is used
with the EDAC to produce very good results. The scheme thus works well
for both internal and external flows. Several results are presented along
with suitable comparisons between the TVF and standard SPH schemes to
demonstrate the new scheme. All the results presented in this work are
reproducible through the publicly available PySPH package [15], [16] along
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with the code in http://gitlab.com/prabhu/edac_sph.

The paper is organized as follows. In Section [2 the governing equations
for the EDAC scheme are outlined. In Section |3 the SPH discretization for
the EDAC equations are presented. In Section[d] the new scheme is evaluated
against a suite benchmark problems of increasing complexity. The results are
compared to the analytical solution where available, and to the traditional
WCSPH and TVF formulations wherever possible. In Section [5 the paper
is concluded with a summary and an outline for further work.

2. The EDAC method

The EDAC method is discussed in detail in [9] [10]. In this method, the
density of the fluid p is held fixed and an evolution equation for the pressure
based on thermodynamic considerations is derived. As a result, a pressure
evolution equation needs to be solved in addition to the momentum equation.
The equations are,

1
fl—‘; = =V +div(o), (1)
d
d_]Z = —pcidiv(u) + vV?p, (2)

where u is the velocity of the fluid, p is the pressure, o is the deviatoric part
of the stress tensor, ¢, is the speed of sound, and v is the kinematic viscosity
of the fluid. The material derivative is defined as,

di-) _o()

—= = —= +u-grad(-). 3

=% grad() Q0
As is typically chosen in WCSPH schemes, the speed of sound is set to a
multiple of the maximum fluid velocity. In this paper ¢s = 10 Upax unless
otherwise mentioned.

In this work, the fluid is assumed to be Newtonian, which results in the

following momentum equation:

du

1 2
Vo + vVau. 4
prTVv u ( )

On comparison with the standard WCSPH formulation, it can be seen that

the momentum equation is unchanged and equation replaces the conti-

nuity equation % = —p(V - u) in the EDAC method. Also, owing to the
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pressure evolution equation in EDAC, there is no need for an equation of
state to couple the fluid density and pressure.

In the next section, an SPH-discretization of these equations is performed
to obtain the numerical scheme.

3. Numerical implementation

As discussed in the introduction, there are two major issues that arise
when using weakly-compressible SPH (WCSPH) formulations. The first is
the presence of large pressure oscillations due to the stiff equation of state
and the second is due to the inhomogeneous particle distributions. The
basic EDAC formulation solves the first problem [14]. The TVF scheme
solves the second problem by the introduction of a background pressure for
internal flows. Based on this, two different formulations using the EDAC are
presented in the following. The first formulation is what we call the standard
EDAC formulation. This formulation can be used for external flows. The
second formulation is what we call the EDAC TVF formulation, which is
based on the TVF formulation and can be applied to internal flows where it
is possible to use a background pressure. Numerical discretizations for both
these schemes are discussed next.

3.1. The standard EDAC formulation

The EDAC formulation keeps the density constant and this eliminates
the need for the continuity equation or the use of a summation density to
find the pressure. However, in SPH discretizations, m/p is typically used
as a proxy for the particle volume. The density of the fluids can therefore
be computed using the summation density approach. This density does not
directly affect the pressure as there is no equation of state. In the case of
solid walls, the density of any wall particle is set to a constant. The classic
summation density equation for SPH is recalled:

Pi = ijwm (5)
J

where W;; = W(|r; — rj|,h) is the kernel function chosen for the SPH dis-
cretization and h is the kernel radius parameter. In this paper, the quintic



spline kernel is used, which is given by,

as [3—¢)°—6(2—¢)°+15(1—¢)°], for0<g<1

3-¢q)° —6(2-q)] for 1 < ¢ <2

%% — Qg [( q ) ) 6

(@ a (3—q)°, for 2 < ¢ <3, ©)
0, for ¢ > 3,

where ay = 7/(4787h?) in 2D.

In the previous work [14], Monaghan’s original formulation was used for
the pressure gradient and the formulation due to Morris et al. [I7] was used
for the viscous term in equation (4)). The method of Adami et al. [18] was
used to implement the effect of boundaries.

In the present work, a number density based formulation is employed as
used in [I§], which results in the following momentum equation:

du; 1

~ - Ui,
& m > (Vv [—PijVVVij + nijmvwij ‘T | g, (7)
? j 1] 1

where ry; =r; —rj u; = u; — uy, hij = (hz + hj)/Q, n= OO]_,

1
Vi= = (8)
> Wi
- Pipi + piD;
= (9)
pi + p;j
N 2nin;
Tt

where n; = p;v;.
The EDAC pressure evolution equation is discretized using a similar
approach to the momentum equation to be,

dp; m;pi o (V2+V7?) . Dij
— Dl 2 g VW il5 j
dt Z pj G A m, (r3; +nhi))

VWi -y, (11)
J

where p;; = p; — p;. The particles are moved according to,
dr;

dt

Upon the specification of suitable initial conditions for u, p, m, and r,

equations , @, (11)), and are sufficient for simulating the flow in the
absence of any boundaries.

=u,. (12)



3.2. EDAC TVF formulation

In WCSPH, as the particles move they tend to become disordered. This
introduces significant errors in the simulation. The particle positions can
be regularized by the addition of a background pressure. A naive approach
would be to simply add a constant pressure and use it in the governing
equations. However, this does not work well in practice as the SPH pres-
sure derivative is not accurate when the pressures are large [19]. The TVF
scheme of Adami et al. [§] overcomes this by advecting the particles using an
arbitrary background pressure through the “transport velocity” and correct
for this background pressure using an additional stress term in the momen-
tum equation. This ensures a homogeneous particle distribution without
introducing a constant background pressure in the pressure derivative term.

For internal flows, the TVF formulation is adapted to introduce the back-
ground pressure. The density is computed using the summation density equa-
tion . As before, this is mainly to serve as a proxy for the particle volume
in the SPH discretizations. The momentum equation for the TVF scheme as
discussed in Adami et al. [§] is given by,

czui
dt

1 1
e > (VP+V7) {_ﬁijvwij + §(Az‘ +A;) - VI
’ (13)

uA,
i ey VWij - Tij | + i,
NG )

where A = pu(ti — u), u is the advection or transport velocity and the

material derivative, < is given as,

d() _a()

— = —= 4+ u-grad(:). 14
=S b grad() (14
Thus the particles move using the transport velocity,
dr; ~
— =, 15

The transport velocity is obtained from the momentum velocity u at each
time step using,

~ d~ui Po
w,(t + dt) = w;(t) + ot ( TR Z (V2 + Vf) VWij> ; (16)

my;

J



where pj is the background pressure.

In the TVF scheme, the pressure is computed from the density using the
standard equation of state with a value of v = 1. Instead, the EDAC equa-
tion is used to evolve the pressure. In the present approach, the pressure
reduction technique proposed by Basa et al. [19] is used to mitigate the errors
due to large pressures. This requires the computation of the average pressure
of each particle, payg:

N;
p.
Pavgi = Z ﬁ]" (17>
j=1""

where N; are the number of neighbors for the particle ¢ and includes both
fluid and boundary neighbors. Equation @D is then replaced with,

ﬁ“ _ p](pl — pavg,i) + pl<p] - pavg,i) . (18)
’ pi + Pj

In Section [4] it can be seen that this results in significantly improved
results that outperform the traditional TVF scheme. It is worth mentioning
that this technique, applied to the standard SPH or to the standard TVF
scheme does not result in any significant improvement.

The boundary conditions are satisfied using the formulation of Adami
et al. [I§]. This method uses fixed wall particles and sets the pressure and
velocity of these wall particles in order to accurately simulate the boundary
conditions. The same scheme is used here with the only modification being
that the density of the boundary particles is not set based on the pressure of
the boundary particles (i.e. equation (28) in Adami et al. [I§] is not used).

3.83. Suitable choice of v for EDAC

In equation one can see that the viscosity v is used to diffuse the
pressure. The original formulation assumes that the value of v is the same
as the fluid viscosity. In practice it is found that if the viscosity is too small,
the pressure builds up too fast and eventually blows up. If the viscosity is
too large it diffuses too fast resulting in a non-physical simulation. Thus, the
physical viscosity is not always the most appropriate. Instead using,

aheg

8 )
works very well. The choice of 1.4, is motivated by the expression for artifi-
cial viscosity in traditional WCSPH formulations. In this paper, it is found

(19)

Vedac =
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that o = 0.5 is a good choice for a wide range of Reynolds numbers (0.0125
to 10000).
To summarize the schemes,

e for external flow problems, equations , , and are used. The
particles move with the fluid velocity u and are advected according

to (12).
e for internal flows, equations , , , and are used.

Equation is used to advect the particles. The transport velocity is
found from equation .

For each of the schemes, the value of v used in the equation is found
using equation . The value of v used in the momentum equation is the
fluid viscosity.

The proposed EDAC scheme is explicit and as such, any suitable inte-
grator can be used. In this work, one of the two simplest possible two-stage
explicit integrators is chosen. For both integrators, the particle properties
are first predicted at ¢ + 6¢/2. The right-hand-side (RHS) is subsequently
evaluated at this intermediate step and the final properties at ¢t + 0t are
obtained by correcting the predicted values. We define two variants of this
predictor-corrector integration scheme. In the first type, the prediction stage
is completed using the RHS from the previous time-step. We call it the
Predict-Evaluate-Correct (PEC) type integrator. In the second variant, an
evaluation of the RHS is carried out for the predictor stage. This integrator,
deemed Evaluate-Predict-Evaluate-Correct (EPEC) is more accurate (at the
cost of two RHS evaluations per time-step).

As mentioned in the introduction, all the equations and algorithms pre-
sented in this work are implemented using the PySPH framework [15, 16}, 20].
PySPH is an open source framework for SPH that is written in Python. It
is easy to use, easy to extend, and supports non-intrusive parallelization and
dynamic load balancing. PySPH provides an implementation of the TVF
formulation and this allows for a comparison of the results with those of
the standard SPH and TVF where necessary. In the next section, the per-
formance of the proposed SPH scheme is evaluated for several benchmark
problems of varying complexity.



4. Numerical Results

In this section the EDAC scheme is applied to a suite of test problems.
The results from the new EDAC scheme are compared with the standard
weakly compressible SPH (WCSPH) and, where possible, with those from
the Transport-Velocity-Formulation (TVF) scheme [§].

Every attempt has been made to allow easy reproduction of all of the
present results. The TVF implementation is available as part of PySPH [20].
The implementation of EDAC-SPH will eventually be merged into PySPH.
Every figure in this article is automatically generated. The approach and
tools used for this are described in detail in a forthcoming article. The code
for the EDAC implementation and the automation of all of our results are
available from http://gitlab.com/prabhu/edac_sph.

4.1. Couette and Poiseuille flow

The Couette and Poiseuille flow problems are extremely simple. They
do not involve a significant motion of the particles, however, they admit an
exact solution which makes it a good first benchmark problem to evaluate
the proposed scheme. These problems have been used before [8] to evaluate
the TVF scheme and we compare our results with theirs. The domain for
these test cases is rectangular with periodic boundary conditions in the z
direction. Standard no-slip wall boundary conditions [I8] are imposed along
the walls.

The quintic spline kernel (equation () is used and the smoothing length,
h, is chosen to be equal to the particle spacing, h = Ax = Ay. The Predict-
Evaluate-Correct (PEC) integrator with a fixed time-step is used and chosen
as per the following equation,

h h?
At =min [ — 2, 2
! mm<4<c+rvmax|>’8u) (20)

Unless explicitly mentioned, all simulations use this integrator and a time-
step chosen as above.

For the Couette flow problem, the Reynolds number is set to Re = 0.0125,
the kinematic viscosity is chosen to be 0.01m?/s and the density is set to
1.0kg/m3. The top wall is assumed to be moving with a fixed velocity of
u = Re x v. In Fig. (1] the axial velocity profile along the channel in the
transverse direction is plotted at ¢ = 100 seconds.
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Figure 1: Axial velocity profile along the channel in the transverse (y) direction for the
Couette flow problem at time ¢ = 100s. A uniform distribution of particles is used with
Az = 0.05.

For the Poiseuille flow problem, the Reynolds number is again set at
Re = 0.0125 and the kinematic viscosity is v = 0.01m?/s. Az = 1/60 and
the smoothing length is set equal to the initial particle spacing. The quintic
spline kernel is used. Fig. [2] shows the axial component of the velocity in the
transverse direction along the channel at ¢ = 100s. The results show that the
EDAC performs as well as the TVF for these problems. It should be noted
that these problems do not involve any significant motion of the particles, the
results are not indicative of the efficacy of the schemes. Nevertheless, these
tests show that the discretization of the EDAC-SPH equations in Section
is consistent with the governing equations.

4.2. Taylor Green Vortex

The Taylor-Green vortex problem is a particularly challenging case to
simulate using SPH. This is an exact solution of the Navier-Stokes equations
in a periodic domain. Here, a two-dimensional version is considered as is
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Figure 2: Axial velocity profile along the channel in the transverse direction for the
Poiseuille flow problem at time ¢ = 100s. A uniform distribution of particles is used
with Az = 1/60.

done in [§]. The fluid is considered periodic in both directions and the exact
solution is given by,

u = —Ue" cos(2mr) sin(27y) (21)
v = Ue sin(272) cos(27y) (22)
p = —U?® (cos(4rz) + cos(4my)) /4, (23)

where U is chosen as 1m/s, b= —87%/Re, Re = UL/v, and L = 1m.

The Reynolds number, Re, is initially chosen to be 100. The flow is ini-
tialized with u, v, p set to the values at t = 0. The evolution of the quantities
are studied for different numerical schemes. The speed of sound is set to 10
times the maximum flow velocity at ¢ = 0. The background pressure is set
as discussed by Adami et al. [8] to p, = ¢?p. The quintic spline kernel is used
with the smoothing length h set to the particle spacing Ax. The value of
a in the equation (|19)) is chosen as 0.5. The results from the standard SPH
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scheme, the TVF, and the new scheme are compared. Since a physical vis-
cosity is used and the solution to the problem remains smooth, no artificial
viscosity is used for any of the schemes.

In Adami et al. [§], the simulation starts with either uniformly distributed
particles or with a “relaxed initial condition”. For the relaxed initial con-
dition, the authors use the particle distribution generated by the uniformly
distributed case at the final time and impose an analytical initial condition
at the particle positions. The results for the uniformly distributed parti-
cles have about an order of magnitude more error than that of the relaxed
initialization. This is because the uniform distribution results in particles
being placed along (or near) stagnation streamlines resulting in non-uniform
particle distributions.

In this work, for this particular problem, the initial distribution is uniform
but a small random displacement is added to the particles. The random
displacement is uniformly distributed and the maximum displacement in any
coordinate direction is chosen to be Az/5. The same initial conditions are
used for all schemes. This is simple to implement, resolves the problems with
stagnation streamlines, and enables for a fair comparison of all the schemes.

In Fig. 3] the decay of the maximum velocity magnitude produced by
different schemes is compared with the exact solution. A regular particle
distribution with n, = n, = 50 is randomly perturbed as discussed above.
The standard SPH, TVF, standard EDAC (labeled EDAC ext), and TVF
EDAC (labeled EDAC) schemes are compared. As can be seen, the EDAC
and TVF perform best. The standard EDAC without the TVF (labeled
EDAC ext) is better than the standard SPH but not as effective as the TVF
scheme. As discussed in previous sections, this occurs because the TVF
background pressure results in a more homogeneous particle distribution.

Fig. |3| does not clearly differentiate between schemes. The L; error of |ul
is a better measure of the performance of the schemes and is plotted in Fig. [4]
The L, error is computed as the average value of the difference between the
exact velocity magnitude and the computed velocity magnitude, that is,

Ll _ Zz |ui,computed| - |ui,exact|7 (24)
Zi ‘ui,exact‘

where the value of u is computed at the particle positions for each particle 7
in the flow.

Fig. [4] clearly brings out the differences in the schemes. It is easy to see
that the TVF EDAC scheme (labeled EDAC) produces much lower errors

13



10° =

\ — Exact
DNR - - Standard SPH
N NG | EDAC ext
Soo — EDAC

[

o
-
’

’

max velocity
/

102 N

Figure 3: The decay with time of the velocity magnitude for the different schemes. Parti-
cles are initialized with n, = n, = 50 and thereafter randomly perturbed. The Reynold’s
number is chosen to be Re = 100. The quintic spline kernel is used with a smoothing
length equal to the initial (undisturbed) particle spacing.

than the TVF scheme (by almost a factor of 4). The difference between
the standard EDAC scheme and the TVF is also brought out. It is easy to
see that the standard EDAC scheme (labeled EDAC ext) is better than the
standard SPH.

In order to better understand the behavior of the methods, several other
variations of the basic schemes have been studied. Fig. [5| shows the L,
error of the velocity magnitude using the TVF formulation, along with the
background pressure correction scheme of Basa et al. [19] (labeled as “TVF
+ BQL”). The results of using the TVF without any background pressure is
labeled as “TVF (pb=0)”. This clearly shows that the pressure correction of
Basa et al. does not affect the TVF scheme, and that without the background
pressure, the standard EDAC is in fact better than the TVF. While this is
only to be expected, it does highlight that the EDAC scheme performs very
well. The plot labeled “EDAC no-BQL” demonstrates that the correction due
to Basa et al. is necessary for the EDAC scheme. It is also found (not shown
here) that using the Basa et al. correction with the standard SPH formulation
does not produce any significant advantages. Similarly, the tensile correction
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Figure 4: The L; error of the velocity magnitude vs. ¢ for the standard SPH (solid line),
EDAC-ext (dash-dot), EDAC (dot) and TVF (dash) schemes.

of Monaghan [21] has no major influence on the results.

The EDAC scheme evolves the pressure in a very different manner from
the traditional WCSPH schemes. It is important to see how it captures the
pressure field as compared with the other schemes. In Fig. [6] the L, error
in the pressure is plotted as the simulation evolves. The pressure in the
EDAC scheme drifts due to the use of the transport velocity used to move
the particles, we therefore compute p — pg,y Where pg., is computed using
equation . In order to make the comparisons uniform this is done for all
the schemes. This does not change the quality of the results by much. The
error is computed as,

— Zz |pi,computed - pi,avg - pi,ezact’ ' (25>

p
f max; (pi,exact)

As can be clearly seen in Fig. [0, the new EDAC scheme outperforms all other
schemes. In Fig. [7 the L; error for the velocity magnitude is plotted but
for different values of the initial particle spacing n,. We note that n, = 25
corresponds to a Az = 0.04. As can be seen, the EDAC scheme (Section
consistently produces less error than the TVF scheme at even such low reso-
lutions. Fig. [§|shows the distribution of particles for the case where n, = 100

15



Figure 5: The Ly error of the velocity magnitude versus ¢

schemes.

Figure 6: The L; error of the pressure versus ¢ for the Standard SPH
(dash), EDAC-ext (dash-dot) and EDAC (dot) schemes.
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Figure 7: The Ly error of the velocity magnitude versus t for different resolutions.

using the EDAC scheme. The color indicates the velocity magnitude. As can
be seen, the particles are distributed homogeneously.

From the convergence plot it can be seen that with just 25 x 25 particles,
the EDAC produces about 3 times less error than the TVF. It is to be noted
that for this low resolution, the random initial perturbation of the particles
is limited to a maximum of Az/10 instead of the Az/5 for the other cases.

In order to study the sensitivity of the simulations to variations in the
parameter « (equation used for the diffusion of the pressure in the EDAC
scheme, a few simulations with n, = 25, Re = 100 for different values of « are
performed. If a = 0, the fluid viscosity is used for the diffusion of pressure.
The results are shown in Fig.[9] The results show that despite a variation of
a by a factor of 40, the error changes by at most 60%. This suggests that a
value of a = 0.5 is a reasonable value.

Fig. shows a convergence study for this problem with Re = 1000
and a = 1.0. The particle spacing is increased from n, = 25 to n, =
201. Convergence in the L; norm for the velocity magnitude is visible and
is verified in Fig. The scheme appears to have close to second order
convergence for this problem.

It is useful to compare the performance of the proposed scheme at high
Reynolds numbers. To this end, simulations are performed at Re = 10000. A
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Figure 8: The distribution of particles at ¢ = 5 for the simulation using the EDAC scheme
with n, = 100. The colors indicate the velocity magnitude.
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Figure 9: The Ly error of the velocity magnitude versus ¢ for different choices of o with
Re = 100, n, = 25 while using the EDAC scheme.
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Figure 10: The L error of the velocity magnitude versus t for different choices of n, at
Re = 1000 while using the EDAC scheme.
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Figure 11: The L; error of the velocity magnitude at ¢ = 50 versus h at Re = 1000 for the
EDAC scheme. The dashed line shows the convergence of an ideal scheme with second
order convergence.
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Figure 12: The L; error of the velocity magnitude versus ¢t at Re = 10000 for the different
schemes, TVF, EDAC, and EDAC external.

100x100 grid of particles is used and with a small random initial perturbation
to the particles (the maximum perturbation of Az/5 is chosen). The TVF,
EDAC external and EDAC TVF schemes are compared. As can be seen in
Fig.[12] the new EDAC schemes perform very well. The EDAC TVF scheme
(labeled as EDAC) significantly outperforms the TVF scheme. The standard
EDAC scheme (Section performs slightly better than the TVF.

In Fig. the Reynolds number is set to 10000 with n, = 101. « is
varied, as before, when a = 0, the physical viscosity is used. Clearly, much
better results are produced when the suggested numerical viscosity value is
used instead of the physical viscosity. When the suggested value is used the
results are not too sensitive to changes in o around the value of 1.

The results show that the new scheme works well and outperforms the
TVEF. They justify the use of the numerical viscosity, equation , instead
of the physical viscosity while diffusing the pressure. It is also important
to note that unlike the TVF, the EDAC scheme works just as well when no
initial random perturbation is given to the particles.
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Figure 13: The L; error of the velocity magnitude versus t for different choices of a at
Re = 10000 while using the EDAC scheme. When o = 0 is used the veg4q. is set to the
fluid viscosity v.

4.8. Lid-Driven-Cavity

The next test problem considered is the classical Lid-Driven-Cavity (LDC)
problem, which is a fairly challenging problem to simulate with SPH. The
setup is simple, a unit square box with no-slip walls on the bottom, left and
right boundaries. The top wall is assumed to be moving with a uniform
velocity, Viiq, which sets the Reynolds number for the problem (Re = %)
The present scheme is studied for three different Reynold’s numbers (Re =
100, 1000, and 5000) and the results are compared the to those of Ghia et
al. [22].

For the SPH simulations, the quintic spline kernel is used with A = Ax.
The PEC type predictor-corrector integrator is used with a fixed time-step,
chosen according to equation . In addition, o = 0.5 for all the SPH
simulations. Since this problem does not involve free-surfaces, the TVF-
EDAC scheme can be used (Section [3.2)).

The discretization in terms of the number of particles is dependent on the
Reynold’s number. A uniform distribution of particles (Azxz = Ay) is used,
with a resolutions of 50 x 50, 100 x 100 and 150 x 150 for the Re = 100,
Re = 1000 and Re = 5000 cases respectively. The timesteps are chosen
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according to equation as before.

For each case, the code is run for a sufficiently long time to reach a steady
state. For the Re = 100 and Re = 1000 cases the velocity plots are made
by averaging over the last 5 saved time-step results. The data is saved every
500 time-steps. The Re = 5000 case requires a longer run-time to reach
a steady state. In this work, the final time for this case is set to ¢ = 250
non-dimensional time units. The velocity plots for this case averaged over
the last 250 saved time-steps (this amounts to averaging the velocity for
approximately the last 19 seconds).
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Figure 14: The velocity profile v vs. y for the lid-driven-cavity problem at different
Reynolds numbers. The results are compared with those of Ghia et al. [22].

In Fig. the u velocity profile along the transverse direction (y) is plot-
ted for different Reynolds numbers along with the results of Ghia et. al Ghia
et al. [22]. Similarly, in Fig. [15] the v velocity profile along the horizontal (z)
direction is plotted for different Reynolds numbers. The agreement is very
good for lower Reynolds numbers. For the Re = 5000 case the agreement is
not the best. This is probably the only case in the present work for which the
results with the EDAC are not better than the TVF. These simulations take
a long while to run hence additional higher-resolution cases have not been
simulated as the results demonstrate that the new scheme works reasonably
well for this problem. We hope to explore this issue at higher Reynolds
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Figure 15: The velocity profile v vs. x for the lid-driven-cavity problem at different
Reynolds numbers. The results are compared with those of Ghia et al. [22].

numbers in greater detail in the future.

It should be noted that at such high Reynolds numbers the use of the
physical viscosity for the pressure diffusion instead of the suggested numerical
viscosity will cause the particles blow up due to a lack of pressure dissipation.

4.4. Periodic lattice of cylinders

Our next case is a benchmark periodic problem in a square domain with
a cylinder. The periodicity means the fluid effectively sees a periodic lattice
of cylinders. This test was used to evaluate the TVF scheme in [§] and
identical parameters are used for the numerical set-up. The length of the
square domain is L = 0.1m and the Reynold’s number is set to one. A body
force, g, = 1.5 x 107 "m/s? drives the flow along the z direction. The cylinder
is placed in the center of the domain with a radius R = 0.02m. A uniform
discretization is used with 100 x 100 particles and a quintic spline kernel with
h = Ax is used. The PEC type predictor-corrector integrator is used with a
fixed time-step chosen using equation ([20)).

Fig. |16| shows the axial velocity profile (u) along the lines x = L/2 and
x = L, when using the TVF-EDAC scheme and compare the results with
the TVF scheme. It is found that the results of the new scheme are in good
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agreement with that of the TVF scheme.
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Figure 16: Axial velocity profile (u) along the transverse (y) direction at x = L/2 and
x = L for the periodic lattice of cylinders using the EDAC (red) and TVF (black) schemes.

4.5. Periodic array of cylinders

The next benchmark is similar to the periodic lattice of cylinders but
with wall boundary conditions along the top and bottom walls. The domain
is periodic in the z direction, driven by a body force g, = 2.5 x 1074m/s>.
A rigid cylinder with radius R = 0.2m is placed in the center of the channel.
The length of the channel is L = 0.12m and the height is H = 4R. The
numerical set-up is identical to that of Adami et al. [§] with n, = 144 but
with h = 1.2Ax chosen for both schemes. Fig. [17] shows the drag coefficient
on the cylinder generated by the TVF and the new scheme. Fig. shows
the distribution of the particles at the final time produced by the EDAC
scheme. The particles are homogeneously distributed as would be expected.
The particle distribution is very similar to that produced by Adami et al. [§].

Note that for this problem, using ¢ = 0.1y/g,R, as recommended by
Adami et al. [§] the particle positions diverge even when using the TVF
formulation. Instead, in order to reproduce the results of Adami et al. [§]
the value is set to ¢ = 0.02m/s as recommended by Ellero and Adams [23].
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The present results suggest that the EDAC scheme performs well for all of
the internal flow cases. A few standard free-surface problems are considered
next.
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Figure 17: The drag variation C'p versus time for a periodic array of cylinders in a channel.
The results from the TVF (dash) are compared with those produced by the EDAC (solid)
scheme.

4.6. FElliptical drop

The elliptical drop problem is a classic problem that was first solved in the
context of SPH by Monaghan [3]. The problem studies the evolution of a cir-
cular drop of inviscid fluid having unit radius in free space with the initial ve-
locity field given by —100xi+ 100yj. The incompressibility constraint on the
fluid enables a derivation for evolution of the semi-major axis of the ellipse.
The problem is simulated with the classic WCSPH where an artificial viscos-
ity with o« = 0.1 is used. The particle spacing is chosen to be Ax = 0.025m. A
Gaussian kernel is used for the WCSPH with A = 1.3Ax. The value of v = 7.
The speed of sound is set to 1400m/s and p = 1.0kg/m3. For the EDAC case,
a quintic spline kernel is used with h = 1.2Az. a = 0.5 for the calculation
of Vegae- An Evaluate-Predict-Evaluate-Correct (EPEC) integration scheme
is used for the WCSPH scheme whereas a Predict-Evaluate-Correct (PEC)
integrator is used for the new scheme and the results are compared.
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Figure 18: The distribution of particles at the final time produced by the EDAC scheme.
The color indicates the velocity magnitude.

In Fig. the semi-major axis of the ellipse is compared with the exact
solution. The standard EDAC scheme (Section is used to simulate the
problem. o = 0.5 and no artificial viscosity is used for the EDAC scheme.
Artificial viscosity is used for the WCSPH implementation with a value of
a = 0.1, = 0.0. One EDAC simulation is performed using the XSPH
correction [24] and one without it. The absolute error in the size of the semi-
major axis with time is used as a metric to compare the results. As can be
seen, the EDAC scheme performs better than the standard SPH both with
and without the XSPH correction.

In Fig. the kinetic energy of the fluid is computed and plotted versus
time. It is to be noted that one may obtain the exact kinetic energy by
integrating the initial velocity field. Given a unit density and an initial
radius of unity, this amounts to approximately 7853.98 units. The kinetic
energy of the standard SPH formulation reduces due to the artificial viscosity.
The EDAC scheme on the other hand does not display any significant loss
of kinetic energy and the value is close to the exact value.

Fig. plots the particle distribution as obtained by the WCSPH sim-
ulation. The colors show the pressure distribution. The solid line is the
exact solution. Fig. shows the same obtained with the EDAC without
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Figure 19: The error in the computed size of the semi-major axis compared for the standard
SPH, EDAC and the EDAC with the use of XSPH.

the XSPH correction and Fig. shows the particles and the pressure dis-
tribution using the EDAC scheme along with the XSPH correction. The
XSPH correction seems to reduce the noise in the particle distribution. It is
clear that the EDAC scheme has much lower pressure oscillations than the
WCSPH scheme even though no artificial viscosity is used.

As can be seen, the new scheme outperforms the standard SPH scheme
in general, conserves kinetic energy, has lower pressure oscillations, and is
quite robust as there is no need for an artificial viscosity to keep the scheme
stable.

4.7. Hydrostatic tank

The next example is a simple benchmark to ensure that the pressure is
evolved correctly. This benchmark consists of a tank of water held at rest as
simulated by Adami et al. [I8]. The fluid is initialized with a zero pressure
with the particles at rest. The acceleration due to gravity is set to -1m/s?, the
height of the water is 0.9m and the density of the fluid is set to 1000kg/m3.
The maximum speed of the fluid is taken to be \/gH and the speed of sound
is set to ten times this value. The timestep is calculated as before using
these values. The acceleration due to gravity is damped as discussed in
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Figure 20: The kinetic energy of the elliptical drop computed by different schemes.
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Figure 21: The distribution of particles for the elliptical drop problem at ¢ = 0.0076
seconds using the standard WCSPH scheme with the use of artificial viscosity. The solid
line is the exact solution and the colors indicated the pressure.
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Figure 22: The distribution of particles for the elliptical drop problem at ¢ = 0.0076
seconds using the EDAC scheme without the addition of the XSPH correction. No artificial
viscosity is used in the simulation. The solid line is the exact solution and the colors
indicated the pressure.

[18]. In order to reproduce the results, the same artificial viscosity factor
a = 0.24 is used. No physical viscosity is used. The parameter a for the
EDAC equation is set to 0.5. The problem is simulated with the TVF scheme
(using no background pressure) as well as the EDAC scheme. To compare
the results, the pressure is evaluated along a line at the center of the tank.

In Fig. [24] the pressure at the bottom of the tank is plotted versus time
for both the TVF scheme and the EDAC scheme. The EDAC scheme seems
to produce a bit more oscillation in the pressure but the overall agreement
is good.

In Fig. 25 the pressure variation with height for a line of points at the
center of the tank is plotted for different schemes at the times ¢ = 0.5 and
t = 2. The agreement is very good. This shows that the EDAC scheme
produces good pressure distributions.

4.8. Water impact in two-dimensions

The case of two rectangular blocks of water impacting is considered next.
A detailed study of this problem has been performed by Marrone et al. [25] in
which they use a fully Compressible, Riemann-Solver type SPH formulation
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Figure 23: The distribution of particles for the elliptical drop problem at ¢ = 0.0076
seconds using the EDAC scheme with the addition of the XSPH correction. No artificial
viscosity is used in the simulation. The solid line is the exact solution and the colors
indicated the pressure.
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Figure 24: Plot of the pressure at the bottom of the tank versus time for different schemes.
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Figure 25: Pressure variation with height for the different schemes at t = 0.5 and ¢t = 2.0.

and compare the results with a Least-Squares finite volume method. The
problem involves two blocks of water, each with side H and height L, that
are stacked vertically at ¢ = 0, with the interface at y = 0. The top block
moves down with the y-component of velocity v = —U and the bottom moves
up with velocity v = U. There is no acceleration due to gravity and the fluid
is treated as inviscid and incompressible. Surface tension is not modeled.
This is simulated using the standard EDAC scheme and also the WCSPH
scheme. In the present case L = 1m, H = 2m, U = 1m/s and p = 1.0kg/m?3.
The Mach number is chosen to be 0.01. For the WCSPH scheme, v = 1. A
quintic spline kernel is used for both schemes with h = Az and L/Ax =
100. As considered in [25], the normalized pressure distribution (p/pcsU)
is shown at t* = Ut/L = 0.007 and at t* = Ut/L = 0.167. When this
case is run without any artificial viscosity, the traditional WCSPH scheme
does not run successfully until the desired time. There are large pressure
oscillations. Fig. 26| shows the particle distribution and pressure for the non-
dimensionalized times of ¢* = 0.007 (left) and ¢* = 0.1 (right). In contrast,
the EDAC case runs fairly well and the results are shown in Fig. Initially,
the pressure is comparable to the results in [25], however, the lack of any
artificial viscosity results in small pressure oscillations at the final time and
some cavitation. In Fig. the same case is simulated with an artificial
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Figure 26: Particle distribution and pressure (p/pcsU) at Ut/L = 0.007 (left) and Ut/L =
0.1 (right) for the water impact problem with the standard WCSPH scheme without any
artificial viscosity.

viscosity with a = 0.1. This produces fairly good results. It is easy to see
that in all cases, the new scheme produces much less pressure oscillations. It
is worth noting that while the WCSPH scheme requires the use of artificial
viscosity for the simulation to complete, it displays high-frequency pressure
oscillations as can be seen in Fig. 29, where the artificial viscosity parameter
a = 0.1 was used for the WCSPH scheme. These results clearly show the
superiority of the new scheme.

4.9. Dam-break in two-dimensions

The two-dimensional dam break over a dry bed is considered next. This
problem cannot be simulated by the TVF scheme. The results are instead
compared with a standard SPH implementation. The suggested corrections
of Hughes and Graham [26] and Marrone et al. [27] are also employed in the
implementation of the standard SPH scheme as provided in PySPH. In the
current work, only the corrections of Hughes and Graham [26] are used. The
delta-SPH corrections of Marrone et al. [27] do not affect the present results.

The problem considered is as described in Gomez-Gesteria et al. [2§]
with a block of water 1m wide and 2m high, placed in a vessel of length
4m. The block is released under the influence of gravity which is assumed to
be —9.81m/s%. To compare the results, the position of the toe of the dam
versus time is plotted and compared with the experimental results extracted
from Koshizuka and Oka [29]. The particles are arranged as per a staggered
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Figure 27: Particle distribution and pressure (p/pcU) at Ut/L = 0.007 (left) and
Ut/L = 0.167 (right) for simulation with the standard EDAC scheme without any ar-
tificial viscosity.
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Figure 28: Particle distribution and pressure at Ut/L = 0.007 (left) and Ut/L = 0.167
(right) for simulation with the standard EDAC scheme with artificial viscosity coefficient
a=0.1.

33



Ut/L=0.007 Ut/L=0.167

1.0

0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0 : -15 -1.0 -0.5 0.0 0.5 1.0 15
X X

Figure 29: Particle distribution and pressure at Ut/L = 0.007 (left) and Ut/L = 0.167
(right) for simulation with the standard WCSPH scheme with artificial viscosity coefficient
a=0.1.

grid as is suggested for the standard SPH formulation by Gomez-Gesteria
et al. [28]. The highest resolution case uses h = 0.0156. Artificial viscosity is
used for the WCSPH implementation with a value of a = 0.1, 5 = 0.0. The
standard Wendland quintic kernel is used for WCSPH case with h = 1.3Az.

For the EDAC implementation, the same particle arrangement as for the
WCSPH case is used. No artificial viscosity or XSPH correction is employed.
A quintic spline kernel is used with h = Axz. The value of « for the is set to
0.5. The only change to the implementation is a clamping of the boundary
pressure to non-negative values so as to prevent the fluid from sticking to the
walls.

The results are plotted in Fig. B0} As can be seen, the results of the
new scheme compare well with the experimental results and the WCSPH
formulation. The figure also plots the results of the Moving Point Semi-
implicit (MPS) scheme of [29]. The agreement is excellent. The difference
between the computational results and those of the experiment are generally
attributed to the fact that the simulations use an inviscid fluid.

4.10. Wave maker in two-dimensions

As a final case, a simplified wave-generator is considered. This case
demonstrates the strength of the new scheme. The problem is a simplified
version of the one simulated by Altomare et al. [30]. The problem consists
of a vessel containing an incompressible fluid with the left wall of the vessel
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Figure 30: Position of the toe of the dam as a function of time compared with experimental
results of [29]. The triangular symbols plot the results of the MPS simulation of [29]. Z is
the distance of the toe of the dam from the left wall and L is the initial width of the dam.

moving periodically. The right and bottom walls are held fixed. The fluid
column height is 0.27m and its initial width is 0.5m. The forcing function
for this is given as,

Hw(sinh(kd) cosh(kd) + kd)
4 sinh?(kd)

u(t) = os(wt), (26)
where d = 0.27,k = 27/1.89, H = 0.1. At ¢t = 0, the right side of the left
wall is at z = 0.

This problem is simulated with the classic WCSPH scheme and with the
new scheme. The simulation is run for a total time of 5 seconds. A timestep
of 5 x 107° seconds is used. The density of the fluid is 1000kg/m3. Artificial
viscosity is used and the value of & = 0.25. The Predict-Evaluate-Correct
(PEC) integrator is used for the EDAC scheme and an Evaluate-Predict-
Evaluate-Correct (EPEC) integrator is used for the WCSPH scheme. The
suggested corrections of Hughes and Graham [26] are used for the WCSPH
scheme. The quintic spline kernel is used for all schemes with Az = 0.004
and h = Ax. The fluid and boundary particles are initialized uniformly.

Fig. shows the pressure along a vertical line at x = 0.25 at t = 5s.
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Figure 31: Plot of pressure interpolated on a line at = 0.25 for the new scheme and with
the classic WCSPH scheme at 5s.

As can be seen, the pressure for the new scheme is smooth even near the
boundary at y = 0.

The minimum and maximum pressure in the fluid at t = 5s is calculated
and compared for the different schemes in Table [II As can be seen, the
EDAC scheme has the least pressure variation. In addition to the WCSPH
and EDAC cases, the problem has also been simulated with the scheme of
Adami et al. [I8] and with the new scheme but without the use of any arti-
ficial viscosity. The new scheme works even without any artificial viscosity.
However, the pressure distribution is more noisy while the maximum pres-
sure is lower than the other schemes. None of the other schemes will work
without an artificial viscosity and the particle positions will diverge within
the first second of the simulation.

It is important to note that the particles diverge with the WCSPH scheme
when the simulation is run beyond 11.85 seconds using the PEC integrator.
This time increases if a more accurate integrator is used namely the EPEC
integrator. However, the particles eventually diverge at 16.05 seconds in this
case. The scheme of Adami et al. [18] also display a particle divergence at
14.8 seconds and exhibits some pressure oscillations although the magnitude
of these oscillations are lower. The new scheme runs for 25 seconds and has
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SPH Scheme DPmin DPmaz
EDAC -7.4 1 2799.9
EDAC w/o artificial viscosity | -782.4 | 3145.5
WCSPH -78.9 | 5640.2
Adami, Hu, Adams|I8] _571.8 | 4395.4

Table 1: The minimum and maximum pressure for the different schemes at ¢t = 5s.

much smaller pressure oscillations than the other schemes. The new scheme
has not been run for longer times but it does not appear that the particle
positions will diverge.

This clearly shows that the new scheme is extremely robust and produces
excellent results.

5. Conclusions

In this work, the Entropically Damped Artificial Compressibility scheme
of Clausen [9] is applied to SPH. Two flavors of the new scheme are devel-
oped, one which is suitable for internal flows where the Transport Velocity
Formulation of Adami et al. [§] is employed along with the EDAC scheme.
The key elements of the scheme are the use of the EDAC equation to evolve
the pressure, the use of the transport velocity, and, importantly, a pressure
correction as suggested by Basa et al. [19]. This scheme outperforms the
TVF scheme for the Taylor Green vortex problem at a variety of Reynolds
numbers. The scheme performs very well for a variety of other internal flow
problems. The standard EDAC scheme is easy to apply to external flow
problems and to free-surface flows. The method produces results that are
better than the standard SPH. The pressure distribution is smoother and
more accurate. It does not require the use of artificial viscosity and is rela-
tively simple to implement. It is seen that a judicious choice of the viscosity
for the pressure equation is important. A heuristic expression is suggested
that appears to work well for all the simulated problems. A fully working
implementation of the scheme and all the benchmarks in this paper are made
available in order to encourage reproducible computational science.
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