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ABSTRACT

KEYWORDS: Random vortex method; high-resolution; panel methods; fast

multipole methods; fast algorithms; object-oriented design.

The hybrid random vortex method (RVM) involving vortex blobs and vortex sheets

is implemented and explored in this work. The method is used to perform high-

resolution simulations of two-dimensional, incompressible, Navier-Stokes fluid flows.

The development of an efficient vortex based solver involves several important

algorithms. The Adaptive Fast Multipole Method (AFMM) (Carrier et al., 1988)

is implemented to accelerate the computation of the velocity field. The need to

handle generic geometries requires the use of a panel method to satisfy the no-

penetration boundary condition. A higher-order panel method that eliminates

the edge-effect is developed in this work. However, the method is computationally

intensive. In order to accelerate the computation, the AFMM is extended to be

used with vortex panels. This necessitates a generalization of the AFMM to handle

passive particles.

In the RVM, particles move randomly in the vicinity of complex geometries.

A fast algorithm is developed to handle this.

Particles of the same sign of circulation are merged. Those of opposite sign are

annihilated. Fast algorithms are used in their implementation. This significantly

reduces the number of particles without adversely affecting the accuracy of the

simulation.

All of these fast algorithms share similar components. An object-oriented

design for vortex methods is developed. This design abstracts several of the key

algorithms and allows for a significant amount of code re-use.

The developed random vortex based solver is applied to the flow past an im-
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pulsively started circular cylinder. The method is studied as the different compu-

tational parameters are varied. Recommendations on the optimal choices of these

parameters are made.

The random vortex method is generally considered to be a low-accuracy scheme

that is unsuitable for high-resolution simulations. To show that this is not the

case, the method is used to simulate the flow past an impulsively started circular

cylinder in the Reynolds number range 40–9500. A new variance reduction scheme

is introduced that is simple and uses the inherent parallelism of the RVM. This

enables high-resolution simulations at high Reynolds numbers. The results are

compared exhaustively with available data from computations using deterministic

diffusion schemes. It is demonstrated that the RVM produces results comparable

to the best available data. The computational effort necessary for the simulations

appears comparable to that necessary for most deterministic schemes. Thus, it

is clearly demonstrated that the RVM can be used to perform high-resolution

simulations.
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CHAPTER 1

INTRODUCTION

A large class of fluid flows can be modeled by the Navier-Stokes (NS) equations.

These are second order, non-linear, partial differential equations. Analytical solu-

tions are available only for a few simple cases. Consequently, solutions for general

fluid flow problems must be obtained using a numerical method. Due to the non-

linear nature of the NS equations and the variety of imposed boundary and initial

conditions, obtaining numerical solutions is a challenging task. Computational

fluid dynamics (CFD) is a field dedicated to the numerical simulation of fluid flow

problems. Traditional CFD involves partitioning the underlying physical space

into a fixed computational grid (structured or unstructured). The NS equations

are discretized on this grid. Generating the grid can involve considerable effort

for complex geometries. For unsteady problems the grid may have to be adap-

tive in order to capture the features accurately. This can be problematic. The

computational grid can also introduce numerical difficulties in the problem.

Vortex methods avoid some of the difficulties with grid-based methods and offer

an interesting alternative approach. A vorticity-velocity formulation is employed.

The vorticity field is discretized into particles of vorticity (rather than specifying

it on a fixed grid). The velocity field is obtained from the vorticity field and the

particles are tracked in a Lagrangian fashion based on the NS equations. The

approach eliminates the need to discretize the convection terms in the NS equa-

tions. Since the vorticity is tracked in terms of displacements of individual vortex

particles, there is no need for a fixed grid on which the governing differential equa-

tions and the unknowns are discretized. The key advantages of vortex methods

are listed below.

• Vorticity is discretized only in regions where it is non-zero.

• A Lagrangian tracking of vorticity is used. Traditional grid generation is not
necessary.



• Numerical diffusion due to the discretization of the convective terms on a
grid is eliminated.

• The method is self adaptive. Vortex particles are created where needed
(typically on the boundary) and as the particles of vorticity move, the natural
evolution of the vorticity field is captured automatically.

• The scheme is time-accurate and therefore ideally suited for unsteady flows.

• Boundary conditions at infinity are automatically taken care of.

• The solution procedure has a strong physical appeal.

• Speziale (1987) has shown that vortex methods can be easily used to solve
the NS equations in non-inertial reference frames.

• The method has been successfully applied to a large number of problems.
Some of these will be discussed later in this chapter.

The vortex method was originally developed for incompressible, single-phase

flows. However, the method has been extended to handle compressible flows (An-

derson, 1985; Krishnan and Ghoniem, 1992; Eldredge et al., 2002a). Two-phase

particulate flows along with two-way coupling are simulated by Chen and Marshall

(1999) using vortex methods.

Vortex methods do have some limitations and practical difficulties in their

implementation. Some of these are listed below.

• Non-trivial to implement for general flows.

• Handling large number of particles requires special and fairly involved tech-
niques to improve computational efficiency.

• Handling generic boundaries efficiently and accurately is challenging.

• Higher order accuracy for long times requires the use of specialized tech-
niques.

• Three-dimensional flows are not simple extensions of the two-dimensional
case.

The present work is concerned with the vortex method applied to two-dimensional,

incompressible, Navier-Stokes fluids.
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1.1 An overview of vortex methods

In a vortex method the vorticity field is discretized into particles of vorticity. The

particulate vorticity is tracked as per the governing differential equations. Vortex

methods usually employ fractional steps or an operator splitting technique. Dur-

ing each time step, the governing differential equation is solved in two sub-steps

— advection and diffusion. The advection step involves the convection of the vor-

ticity based on the velocity field, which is obtained from the vorticity field. The

convective displacements of the particles are determined from the known velocity

field. The vorticity is then diffused in the second sub-step. The order of the two

sub-steps may be varied. The boundary conditions imposed are that the fluid

velocity on the surface of solid walls should equal that of the local surface. At in-

finity the velocity due to compactly supported vorticity is naturally zero, fulfilling

the required boundary condition. In the following, more details on advection and

diffusion are provided along with a brief survey of relevant literature.

1.1.1 Advection

The velocity field is required in order to advect the vortex elements. Given a

vorticity field, the velocity field is obtained using the Biot-Savart law applied

to the vorticity. Obtaining an accurate velocity field efficiently is the primary

prerequisite for advection.

The earliest vortex methods used point vortices to discretize the vorticity re-

sulting in the point vortex method. This method is second order (Goodman et al.,

1990) and converges to solutions of the Euler equations. However, the point vor-

tex has a singular vorticity and velocity field. This causes numerical problems1

since poor velocity approximations are obtained in the vicinity of the point vor-

tices (Beale and Majda, 1985).

The difficulty created by the singularity in the velocity field can be mitigated

1Historically, research in this area has been driven by the evolution and roll-up of a vortex
sheet. When simulating this problem with the point-vortex model, researchers obtained poor
results (see Krasny (1987, p. 124)).
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by desingularizing the point vortex. This can be done by using a scheme such as

the cloud-in-cell (CIC) algorithm2 to compute the velocity as done by Christiansen

(1973), Tryggvason (1988, 1989) and others. However, the method requires the

use of a grid.

Chorin and Bernard (1973) proposed that the point vortex be desingularized

into vortex blobs in order to obtain bounded velocities and better approximations

to the vorticity field. The resulting method is called the vortex blob method.

This approach is grid-free and widely used. The method has been successfully

used to model a variety of flows (discussed subsequently) including the evolution

and roll-up of vortex sheets (Krasny, 1986, 1987).

While the point vortex method is second order (Goodman et al., 1990), higher

order methods can be constructed if vortex blobs are used. However, higher order

accuracy for long times also requires special attention. Perlman (1985) found that

a large amount of smoothing is necessary. Others use a re-zoning (also known

as remeshing or regridding) technique (Beale and Majda, 1985; Nordmark, 1991,

1996; Koumoutsakos, 1997). This method uses a grid to re-initialize the vortex

particles occasionally. Ghoniem et al. (1988) and Krishnan and Ghoniem (1992)

introduce new particles along the principal strain direction while Meiburg (1989)

adaptively modifies the smoothing to ensure a well organized distribution of parti-

cles. Remeshing and excessive smoothing can be avoided by using a better scheme

for the velocity quadrature (Russo and Strain, 1994; Strain, 1996, 1997).

The method of contour dynamics (Zabusky et al., 1979) is an alternative to

the vortex blob method applicable to the Euler equations with piecewise constant

vorticity patches. In this approach, the motion of the iso-contours of vorticity can

be used to determine the evolution of the vorticity patches. The method therefore

tracks the boundary of the vorticity contours.

In the present work, the vortex blob method is used and no remeshing proce-

dure is employed.

2The method uses a grid to interpolate the vorticity and rapidly solves the Poisson equation
on this grid. This eliminates the singular velocity field.
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Fast summation schemes

In vortex blob methods, the velocity induced on a vortex particle, P , can be

computed by finding the influence of all the particles on P . For N particles, this

is an O(N2) process. This can be prohibitively expensive since N is large when

high accuracy is desired. The O(N2) computation can be accelerated using a

variety of fast summation techniques (Anderson, 1986; Greengard and Rokhlin,

1987; Carrier et al., 1988; Anderson, 1992; Draghicescu and Draghicescu, 1995).

The adaptive fast multipole method (AFMM) due to Carrier et al. (1988) reduces

the operation count to O(N). The present work uses this algorithm. These fast

summation algorithms work by hierarchically identifying clusters of particles and

evaluating particle-cluster and cluster-cluster interactions in addition to particle-

particle interactions. These techniques are discussed in considerable detail in

appendix A and chapter 4.

Boundary conditions

The velocity field must satisfy a no-penetration boundary condition on solid walls

(also called the no-flow boundary condition). Different techniques are used to

satisfy this condition, the most common being the method of images. For simple

geometries, the computational domain can be transformed to the plane of a circle

or a half plane. Image vortices are introduced in the transformed plane to satisfy

the boundary condition. This technique is not suitable for arbitrary geometries.

Some researchers (Sethian, 1984) have used grid-based fast Poisson solvers to

satisfy the boundary condition. However, this approach introduces a grid in an

otherwise grid-free simulation. A panel method (Katz and Plotkin, 1991) or a

boundary element method is an alternative requiring a grid only on the boundary

of the domain. The method is applicable to complex geometries. In this technique,

singularities are distributed on the body surface in order to satisfy the boundary

condition. If high accuracy is desired, it is necessary to use a higher order panel

method. In the present work a panel method that uses cubic geometry elements

is developed. This is discussed in section 3.6. It is also possible to improve
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the computational efficiency of the panel method by adapting the fast multipole

method suitably. These techniques are discussed in chapter 4.

1.1.2 Diffusion

Diffusion of vorticity occurs as a result of the viscosity of the fluid. This viscosity

has two significant effects on a vortex based simulation.

• The creation of new vorticity to satisfy the no-slip boundary condition.

• The diffusion of existing vorticity in the fluid.

Viscosity ensures that the fluid on the wall adheres to it. Vortex methods

either introduce new vorticity along the boundary or introduce a vorticity flux on

the boundary in order to satisfy this boundary condition. In some cases a thin

sheet of vorticity having appropriate strength at the boundary is created. This

sheet of vorticity is discretized into a layer of vortex blobs as done by (Chorin,

1973; Clarke and Tutty, 1994; Lin et al., 1997) and various others. In order to

model the boundary layer accurately, Chorin (1978) proposed a “vortex sheet”

model where vorticity near the boundary is represented as thin vortex sheet ele-

ments. This approach is used by (Chorin, 1978, 1980; Ghoniem et al., 1982; Cheer,

1989; Choi et al., 1988) and various others. Other variants of anisotropic vortex

sheet elements (Teng, 1982; Bernard, 1995; Huyer and Grant, 1996; Marshall and

Grant, 1996) have also been developed and used. Koumoutsakos et al. (1994) in-

stead diffuse the vorticity from the sheet to nearby vortex particles such that the

boundary condition is satisfied. This approach has been used by (Koumoutsakos

and Leonard, 1995; Cottet et al., 2000; Ploumhans and Winckelmans, 2000) and

others who use the particle strength exchange (Degond and Mas-Gallic, 1989) dif-

fusion scheme. A recently developed technique uses impulse elements (Summers,

2000) in the form of vortex monopoles or vortex dipoles generated at the boundary

to satisfy the boundary condition.

There are several techniques to simulate diffusion of vorticity in a manner

suitable to particle based methods. The earliest of these is the method based on
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random walks due to Chorin (1973). In this method, each vortex particle performs

a random walk. The steps of the random walk are drawn from a Gaussian distribu-

tion having zero mean and a variance dependent on both the kinematic viscosity,

ν, and time step. The resulting vortex method is called the random vortex method

(RVM). The method produces results with statistical noise. It is known to have a

low rate of convergence (Roberts, 1985), O(
√

ν/N), where N is the number of par-

ticles. It is, however, very easy to implement for simple geometries. The method

is also completely grid-free. One (rarely mentioned) computational difficulty with

the method is in the efficient handling of the random motion of the particles

in the presence of arbitrary complex geometries. The present work describes a

scheme to address this in section 5.1. A detailed account of simulating diffusion

with random walk methods for various applications is presented in Ghoniem and

Sherman (1985). Chang (1988) explores the connection between the RVM and

stochastic differential equations. He shows how the method can be extended to be

used in Runge-Kutta time stepping schemes. Heemink and Blokland (1995) use

the connection to stochastic differential equations to show how spatially varying

viscosity can be handled using the random walk algorithm. Fogelson and Dillon

(1993) show that particle methods using random walks converge when smoothed

carefully. However, a large number of particles is necessary to obtain accurate

results.

Deterministic diffusion schemes seek to eliminate the statistical noise in the

RVM and improve its low rate of convergence. The core spreading technique was

proposed by Leonard (1980). This technique involves increasing the size of the

vortex blob using the heat kernel. The method is grid-free. However, Greengard

(1985) proved that the core-spreading model does not converge when used in

the context of the NS equations. Rossi (1996) showed that if the blobs were

split into smaller blobs once they grew beyond a particular size, then the core-

spreading model does converge. Shiels (1998) successfully used the core spreading

model along with the modifications suggested by Rossi (1996, 1997) to obtain high

resolution results. Kida (1998) developed a modified version of the core-spreading

model and compared it with the original core spreading model and the random

vortex method.
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Clarke and Tutty (1994) employ a diffusion scheme called the “diffusion ve-

locity method”. The scheme was originally proposed by Degond and Mustieles

(1990) and also by Ogami and Akamatsu (1991). In this scheme, diffusion is simu-

lated by adding a diffusive velocity to the convective velocity and then displacing

the particles. The method is grid-free. In practice (Clarke and Tutty, 1994) the

method does not diffuse vorticity correctly when the vortices are spaced far apart.

The particle strength exchange (PSE) technique of Degond and Mas-Gallic

(1989) is a deterministic diffusion scheme that has been well studied and applied.

The method works by replacing the Laplacian in the diffusion equation by an

integral operator. The method requires a reasonable amount of overlap between

the vortex particles in order to be stable and accurate. This necessitates the use

of a remeshing procedure where the vorticity is interpolated onto a grid and the

vortex particles are regenerated. The method has been successfully used to pro-

duce high resolution simulations (Koumoutsakos and Leonard, 1993, 1995; Shiels,

1998; Ploumhans et al., 1999; Ploumhans and Winckelmans, 2000). The PSE orig-

inally required that the vortex blobs have the same core-radius but recent work

due to Cottet et al. (2000) and Ploumhans and Winckelmans (2000) enable the

use of spatially varying cores. Eldredge et al. (2002b) have extended the idea of

using integral operators to approximate arbitrary derivatives of fluid properties

defined on a collection of particles. This idea is used in their development of the

compressible vortex method (Eldredge et al., 2002a).

Fishelov (1990) also proposed a deterministic vortex method that is similar to

the PSE. The spatial derivatives in the viscous term are applied on the smoothing

function. This differentiated smoothing function is convolved with the vorticity to

obtain the new vorticity distribution. This method also requires that the cores of

the vortex blobs overlap and therefore requires remeshing. Bernard (1995) used

this scheme to develop a deterministic vortex sheet algorithm for boundary layer

flows.

Shankar and van Dommelen (1996a); Shankar (1996) have developed a grid-

free scheme called the vorticity redistribution technique (VRT). The method is

similar to the PSE in that the strength (circulation) of the vortex particles are
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distributed to neighboring particles. However, a system of equations is solved

to obtain the correct fractions of the circulation to be distributed. The method

is not dependent on the smoothing function used by the vortex blobs. Further,

it imposes no requirement on the spatial ordering of the blobs and requires no

remeshing. The method has been used for high resolution simulations (Shankar,

1996; Shankar and van Dommelen, 1996b; Takeda et al., 1999). The method also

appears to require fewer particles than equivalent PSE computations to obtain

results of similar accuracy. The most attractive feature of this method is its grid-

free nature.

Apart from purely Lagrangian vortex method implementations there are hybrid

schemes that also make use of a fixed grid during the computation. Cottet (1990)

uses the PSE technique to simulate diffusion. A fixed grid is used to correct the

errors due to particle distortion. The method of Qian and Vezza (2001) uses a

cell-centered finite volume method to solve the integral equations for the vorticity.

Only the cells with non-zero vorticity are used in this scheme. The velocity field

used in the flux term evaluation is computed using the Biot-Savart law. This

computation of the velocity is accelerated using a fast summation technique (Van

Dommelen and Rundensteiner, 1989). The results compare well with the available

high-resolution vortex method simulations.

Leonard (1980) provides an early review of vortex methods. Puckett (1991)

also reviews vortex methods and discusses the RVM and its implementation in

detail. Cottet and Koumoutsakos (2000) present details of vortex methods with

an emphasis on some of the more recent developments.

The focus of the present work is the hybrid random vortex method (RVM)

using both vortex blobs and vortex sheets.

1.2 State of the RVM

In this section the various results and applications of the RVM are reviewed.

The RVM as devised by Chorin (1973, 1978) has been used to simulate a variety
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of fluid flows. Chorin (1980) used the method to study boundary layer instability

in two and three dimensions.

Porthouse and Lewis (1981) independently devised the random vortex method

to investigate boundary layer flows and also to simulate the wake of an impul-

sively started cylinder. Their solutions were of a low resolution but illustrated the

usefulness of vortex methods.

Ghoniem et al. (1982) modeled turbulent flow in a combustion tunnel using

the RVM. The method of images along with conformal transformation was used

to satisfy the no-flow boundary condition. The velocity field was obtained using

the direct O(N2) method. The simulations were in good qualitative agreement

with experimental results.

Cheer (1983) used the hybrid vortex sheet/blob method to simulate the flow

past a circular cylinder and a Joukowski airfoil at Reynolds numbers of 1000 and

2000. The velocity field was obtained using the direct method. The method of

images was used to satisfy the solid-wall boundary condition. Conformal transfor-

mation was used in the case of the airfoil problem. The computations were fairly

coarse and the results compared well with known experimental results.

Sethian (1984) simulated turbulent combustion inside a rectangular chamber

using the random vortex method. A fast Poisson solver was used to impose the

solid wall boundary condition. The direct method was used to compute the ve-

locity. Both vortex sheets and blobs were used.

Smith and Stansby (1985) simulated wave-induced bed flows in spatially peri-

odic domains using the RVM. The vortex-in-cell technique was used to compute

the velocity field. A boundary integral method was used to compute the strength

of the vortex sheet to be shed at the bed wall. The flow due to different imposed

wave motions and the flow over a rippled bed were studied. The results for the

averaged flow field agreed well with existing theoretical and experimental data.

Ghoniem and Gagnon (1987) studied the recirculating flow for the case of a

backwards facing step at low Reynolds number. Sethian and Ghoniem (1988) also

studied the flow past a backward facing step for a range of Reynolds numbers for
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different values of the relevant computational parameters. The direct method was

used for the velocity. Both vortex sheets and blobs were used. The results were

compared with experimental data and the agreement was found to be good.

Ghoniem and Ng (1987) studied the dynamics of a forced shear layer inside a

channel. The forced shear layer was generated in the center of the channel and

since there were no solid walls of interest in the immediate vicinity of the shear

layer, no vortex sheets were released along the walls of the channel.

Smith and Stansby (1988) simulated the flow past an impulsively started cir-

cular cylinder. They used a vortex-in-cell technique to compute the velocity field.

No vortex sheets were used. Their results were of a low resolution. However, they

obtained good agreement with various experimental and theoretical results.

Choi et al. (1988) simulated the initial transient flow inside a lid-driven square

cavity using the RVM for Reynolds numbers of 2000, 5000 and 10000. The no-

penetration condition was satisfied using a velocity field which was obtained in

terms of elliptic integrals. The results were in good agreement with those of a

finite difference code. Notably, they also discussed the available techniques to

remove “parasitic elements”3 from the computation.

Cheer (1989) simulated the flow past an impulsively started circular cylin-

der for various Reynolds numbers. She used the method of images to satisfy

the no-penetration boundary condition. The direct method was used to compute

the velocities. Results for various Reynolds numbers were compared with exper-

imental and computational data. Good agreement was obtained. However, the

computations were of a low resolution.

Smith and Stansby (1989) introduced a scheme where particles that strike a

solid wall are deleted (absorbed by the body) instead of being reflected. Both

reflection and absorption were studied. It was seen that absorption produced

better results with fewer particles. They simulated the flow past an impulsively

started cylinder at various Reynolds numbers. Heat transfer was modeled by

3In the RVM, it is commonly found that negatively signed sheets are created in regions where
only positive vorticity is physically valid. Similarly, positive vorticity is sometimes released in
regions of negative vorticity. These oppositely signed vortices are called “parasitic elements”.
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the generation of “temperature particles” that are similar to vortex particles.

The results compared well with results from a finite difference simulation and

experiments.

Summers (1989) simulated incompressible boundary layer flow with an external

velocity given by U(x) = U0x
m, where m is real. The time-averaged steady state

solutions from these simulations were compared with the similarity solutions of

the Falkner-Skan equations. Good agreement was obtained excepting for the cases

where m is negative (adverse pressure gradient) and close to the case where full

separation is expected.

Puckett (1989) studied the vortex sheet method in considerable detail. A new

sheet creation approach was proposed and the use of higher order sheets was also

proposed and studied. He proved theoretically that one time step of the sheet

creation process and random walk consistently approximates the exact solution of

the heat equation. He performed an extensive numerical study and compared his

results with the Blasius profile. He found that obtaining optimal results required

that the parameters be carefully chosen. Recommendations regarding the choice

of sheet creation scheme, integration scheme and sheet tagging were also made.

Baden and Puckett (1990) computed the flow inside a rectangular domain

with a stationary vortex at its center. They used Anderson’s method of local cor-

rections (Anderson, 1986) to accelerate the computation of the velocity and the

random vortex method to simulate diffusion. They also accelerated the computa-

tion of the velocity of the vortex sheets by organizing the sheets into “bins” based

on their spatial location.

Kim and Flynn (1995) simulated the flow past multiple bodies using the RVM.

A panel method was used to enforce the no-penetration boundary condition. The

adaptive fast multipole method (Carrier et al., 1988) was used for the computation

of the velocity of the vortex blobs. Vortex sheets were also used. They were

interested more in the flow patterns rather than quantitative measures. Hence,

their results were of a low resolution.

Huyer and Grant (1996) used the RVM in the context of anisotropic vorticity
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elements. They used thin rectangular vortex elements with constant vorticity.

They also employed a fast multipole method to accelerate the computations.

Mortazavi et al. (1996) study the convergence of the RVM as some of the critical

computational parameters are varied. The flow of an internal jet in a confined

region expanding into a chamber is studied. They find that the parameters must

be carefully chosen to avoid numerical accuracy and stability related problems.

However, no concrete guidelines are provided on how the parameters are to be

chosen optimally.

The RVM has also been used recently without vortex sheets by researchers

to simulate the flow past a circular cylinder (Clarke and Tutty, 1994), pitching

airfoil (Lin et al., 1997), the flow past square and rectangular cylinders (Taylor

and Vezza, 1999b,a). Of these, Clarke and Tutty (1994) used the O(N log N)

method due to Van Dommelen and Rundensteiner (1989) for the computation of

the velocity field. Taylor and Vezza (1999b,a) used a different O(N log N) method

for the velocity computation. Clarke and Tutty (1994) used a higher order panel

method (parabolic geometry) to satisfy the no-penetration boundary condition.

They also used a diffusion velocity method to simulate diffusion near the body.

The RVM was used in the wake region. Taylor and Vezza (1999b,a) used a linear

geometry panel method. Their simulations are in general of a lower resolution as

compared to those of Koumoutsakos and Leonard (1995) who uses a deterministic

diffusion scheme.

At the Department of Aerospace Engineering, IIT-Madras, Shashidhar (1998)

investigated the vortex blob method and applied the RVM to the flow past zero

thickness flat plates. He also studied the problem of vortex sheet roll-up in some

detail. However, his implementation of the RVM was not designed for generic

flows and used a conformal transformation to apply the no-penetration condition.

His work also did not employ fast multipole methods. The work focussed on the

theory and implementation of the RVM.
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1.3 Motivation

Most vortex method implementations either do not use panel methods or use lower

order panel methods which have difficulties due to the edge effect. From a study of

the literature, it seems that only Clarke and Tutty (1994) and Takeda et al. (1999)

have implemented a higher-order (parabolic) panel method to eliminate the edge

effect and obtain high accuracy. However, they do not use fast multipole methods

to compute the panel velocities rapidly. This makes the method fairly inefficient.

Thus, it is important to develop an accurate and efficient panel method.

In the RVM, particles move randomly. These particles should not penetrate

solid walls. Enforcing this efficiently in the presence of complex geometries is

difficult. This problem does not appear to have been addressed in the literature.

Developing a fast algorithm for this purpose is of importance.

An efficient and accurate vortex based solver for general flows involves several

algorithms. Some of these algorithms can be quite complex and a significant

amount of programming effort is required to implement them. Therefore, it is

difficult to develop the solver from scratch. However, due to the Lagrangian nature

of vortex methods there is significant commonality between the key algorithms.

Abstracting these common algorithms minimizes code duplication. It also makes

the code much easier to understand and extend. The use of object-oriented design

makes this abstraction possible. Thus, it is of great use to apply object-oriented

design principles to this problem.

From a review of the existing literature, it is clear that the RVM has been

widely applied over the years. However, it also appears that most of the computa-

tions are of a low resolution and only represent engineering approximations. This

is understandable because of the constraints on computational power and memory

at the times these studies were made. Many of these studies also predated the

fast multipole algorithms.

All the published computations employing the RVM to simulate the initial

transients for the impulsively translated cylinder (Cheer, 1983, 1989; Smith and
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Stansby, 1988, 1989) are of a low resolution as compared to similar computations

where a deterministic diffusion scheme is used. Koumoutsakos and Leonard (1995),

Shankar (1996), Shiels (1998) and Ploumhans and Winckelmans (2000) all simulate

the same problem using deterministic diffusion schemes4. In particular, the results

of Smith and Stansby (1988) compare very poorly with any of their computations.

Shankar (1996) also compares his results with unpublished data from the RVM.

The agreement is not very good. He does mention that the RVM is a usable method

that requires a large number of particles. However, there is a clear lack of published

evidence that demonstrates that the RVM can be used to perform high-resolution

computations. If anything, all existing results point to just the opposite. Due

to these reasons, some researchers argue that the RVM is only a low-resolution

technique and cannot be reliably used for high-resolution computations.

The present work seeks to address these concerns.

1.4 Objective of present work

There are two components of the present work. The first is to develop and im-

plement a two-dimensional vortex method employing the random vortex method

for diffusion. The second is to study the random vortex method and investigate

the possibility of performing high-resolution simulations with it. The following

are the key goals of the work.

• Develop and implement the essential algorithms and tools useful for 2D
vortex methods.

• Provide an object-oriented design and implementation for vortex methods.

• Use the Random Vortex Method (RVM) (Chorin, 1973, 1978) to handle
diffusion.

• Study the issues involved in obtaining high-resolution results with the RVM.
Importantly, it is shown that the method is indeed capable of high-resolution.

4The results of Koumoutsakos and Leonard (1995) are considered to be direct numerical
simulations (DNS) for the flow past an impulsively started circular cylinder.

15



The following important algorithms are developed and implemented in this

work.

• The adaptive fast multipole method (AFMM) (Carrier et al., 1988).

• An efficient and accurate panel method for fairly generic geometries.

• Efficiently performing diffusion using the RVM in the presence of complex
geometries.

• Efficient merging of particles based on a proximity criterion.

The AFMM (Carrier et al., 1988) is implemented using an object-oriented

design that allows for easy extension and code re-use.

A cubic panel method that eliminates the edge effect is developed. The method

is both accurate and efficient. Efficiency is achieved by the use of a fast multipole

algorithm to compute the panel velocity field. This also necessitates a generaliza-

tion of the AFMM to handle passive particles.

A fast algorithm to handle a large number of particles moving randomly in the

presence of complex geometries is developed.

A simple technique called “annihilation” is used to eliminate the parasitic

elements that are generated in RVM simulations. The method deletes nearby

vortex sheets of opposite sign based on a proximity criterion. This enables for

a large reduction in the number of particles and improves the accuracy of the

simulation. The merging of like signed vorticity is also used to reduce the number

of interacting particles. Almost an order of magnitude reduction in the number

of particles is observed when these techniques are used.

Object oriented design (OOD) allows software developers to manage large and

complex software. It allows one to develop code with a high degree of abstraction

that enables easier understanding and extension of the developed software. Apart

from the obvious benefits in the programming of such codes, OOD sometimes

enables a clearer understanding of the physical problem. Thus the present work

provides an object-oriented design and implementation for vortex methods.

In section 1.3 it was seen that the RVM is considered to be a low-resolution

technique useful only for engineering approximations. In the present work it is
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shown that it is certainly possible to use the RVM to perform high-resolution simu-

lations. For high Reynolds numbers, a simple variance reduction technique is intro-

duced. The method takes advantage of the parallelism inherent in the RVM. This

enables the present work to obtain excellent results for high Reynolds numbers.

Exhaustive comparisons are made with the available results of Koumoutsakos and

Leonard (1995), Shankar (1996) and Ploumhans and Winckelmans (2000) for the

flow past an impulsively started cylinder. Some of the results of Shiels (1998) are

also used for comparison. These comparisons conclusively demonstrate that the

RVM can indeed be used for high-resolution simulations. It is to be noted that

the objective of these comparisons is not to claim that the RVM is superior to a

deterministic scheme but to illustrate that accurate and useful results are certainly

possible with the RVM.

1.5 Overview of thesis

Chapter 2 provides theoretical details on vortex methods with specific reference to

the schemes used in the present work. The numerical implementation and overall

details of the algorithms are discussed in chapter 3. Issues with advection and

diffusion are discussed. The panel method as a means to ensure the no-penetration

boundary condition is also developed. The new variance reduction scheme is also

introduced. Chapter 4 discusses the application of the AFMM to accelerate the

computation of the velocity field due to the vortex panels used in the panel method.

A new method that elegantly handles passive particles with the AFMM is also

developed. Chapter 5 discusses some of the other useful fast algorithms used in

the present work. Notably the algorithm to handle randomly moving particles in

the vicinity of complex geometries is discussed. Chapter 6 discusses the object-

oriented design for vortex methods developed in the present work. The chapter

also illustrates the power and benefits that were obtained by using an object-

oriented design. In chapter 7 the flow past an impulsively started circular cylinder

is used as a benchmark problem. The different parameters involved in the method

are varied and their influence on the results is studied. Several recommendations
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on the optimal choice of the parameters are made. In chapter 8, results for the

simulation of the flow past an impulsively started circular cylinder at Reynolds

numbers in the range 40–9500 are presented. The results of chapter 7 are used to

choose the parameters suitably. The results obtained with the RVM are compared

with available computational data. Finally, chapter 9 summarizes the work and

mentions many issues, problems and improvements that could be pursued in the

future.

Appendix A provides a detailed description of the adaptive fast multipole

method (AFMM). The theoretical and implementation details of the method are

brought out. Appendix B describes how common diagnostic quantities are com-

puted.
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CHAPTER 2

PROBLEM FORMULATION

In this chapter, the governing equations for the problem considered are presented.

Some basic theoretical details of vortex methods are provided. The advection and

diffusion steps of the vortex method are discussed in some detail.

2.1 Governing equations

Consider an incompressible, Navier-Stokes fluid with constant kinematic viscosity,

ν and density ρ. As shown in Fig. 2.1, let the domain of the fluid be denoted

as D and the boundary of an immersed solid body as B. At any point, let p be

the pressure and ~V the velocity of the fluid. The fluid flow is assumed to be iso-

thermal. The flow over the solid body moving in the unbounded fluid is governed

by the conservation of mass and linear momentum equations. Conservation of

mass results in the following equation,

div~V = 0. (2.1)

Conservation of linear momentum results in the following equation,

∂~V

∂t
+ ~V · grad ~V = −1

ρ
grad p + ν∇2~V . (2.2)

As shown in Fig 2.1, the boundary and initial conditions are,

~V (~r, 0) = ~V0(~r), (2.3a)

~V (~r, t) = 0 as ~r →∞, (2.3b)

~V (~r, t) = ~VB on B. (2.3c)



~VB is the velocity of the boundary, and in general is a function of space and time.

The boundary condition on B ensures no-penetration and no-slip on solid walls.

These equations along with the boundary conditions are illustrated in Fig. 2.1.
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Initial condition: ~V (~r, 0) = ~V0(~r)
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div~V = 0

~V (~r) 6= 0

~VB

D~V
Dt = −1

ρgradp + ν∇2~V

Figure 2.1: Problem specification employing primitive variables.

In vortex methods the above equations are represented in terms of the vorticity,

~ω. Vorticity is defined as the curl of the velocity, ~ω = curl ~V . If the curl operator

is applied to equation (2.2) the following equation is obtained,

D~ω

Dt︸︷︷︸
Advection

= ~ω · grad ~V︸ ︷︷ ︸
Stretching

+ ν∇2~ω︸ ︷︷ ︸
Diffusion

, (2.4)

where,
D

Dt
=

∂( )

∂t
+ ~V · grad ( ),

is the material derivative. As can be seen, the pressure term is eliminated from

this equation.

For a two-dimensional flow ~ω is normal to the plane of the flow and therefore

~ω = ωk̂. Consequently, the vortex stretching term in equation (2.4) is zero.

Therefore, the governing differential equations in vorticity-velocity form for a two-
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No-penetration: ~V · ên = ~VB · ên.
No-slip:~V · ês = ~VB · ês
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ρ, ν are constant div~V = 0

Initial condition: ω(~r, 0) = ω0(~r)

B

ω = 0

Dω
Dt = ν∇2ω

ω(~r) 6= 0

~VB

Figure 2.2: Problem specification in vorticity-velocity form.

dimensional fluid flow are as follows.

∂ω

∂t
+ ~V · grad ω = ν∇2ω, (Vorticity transport) (2.5a)

ω = curl ~V · k̂, (Vorticity) (2.5b)

div ~V = 0, (Mass conservation) (2.5c)

ω(~r, 0) = ω0(~r), (Initial condition) (2.5d)

~V (~r, t) = 0 as ~r →∞, (Infinity BC) (2.5e)

~V (~r, t) · ên = ~VB · ên on B, (No-penetration BC) (2.5f)

~V (~r, t) · ês = ~VB · ês on B. (No-slip BC) (2.5g)

where ên and ês are the normal and tangential unit vectors on B. These are

illustrated in Fig. 2.2. In the figure it can be seen that the region of non-zero

vorticity for the flow past a body in an unbounded fluid is compact.

In the context of vortex methods equation (2.5a) is solved in two steps.

Dω

Dt
= 0, (Advection) (2.6a)

∂ω

∂t
= ν∇2ω. (Diffusion) (2.6b)
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Equation (2.6a) is the advection equation. Equation (2.6b) is the diffusion equa-

tion. During each time step, the advection and diffusion equations are solved

separately. This is called the method of fractional steps or an operator/viscous

splitting technique (Beale and Majda, 1981). This approach enables a Lagrangian

method of solution for the equations.

2.2 Advection

The advection equation (2.6a) corresponds to the Euler equation in vorticity form.

It implies that vorticity is a fluid property and remains constant along a particle

path. The advection equation along with the boundary conditions are given by,

∂ω

∂t
+ ~V · grad ω = 0, (Advection) (2.7a)

ω = curl ~V · k̂, (Vorticity) (2.7b)

div ~V = 0, (Mass Conservation) (2.7c)

ω(~r, 0) = ω0(~r), (Initial condition) (2.7d)

~V (~r, t) = 0 as ~r →∞, (Infinity BC) (2.7e)

~V (~r, t) · ên = ~VB · ên on B. (No-penetration BC) (2.7f)

Given the vorticity field, the velocity field that satisfies the boundary conditions

is to be found. This velocity field can then be used to advect the vorticity using

the advection equation (2.7a).

2.2.1 Obtaining the velocity field from ω

The velocity field can be computed from the vorticity field as follows. If ψ is the

stream-function then it is known that

~V = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
= (∂y,−∂x)ψ. (2.8)
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From the definition of vorticity it can be seen that

∇2ψ = −ω. (2.9)

This equation can be solved to obtain the stream-function from the known vortic-

ity. The boundary conditions are satisfied by using the homogenous part of the

solution. Therefore, ψ is written as,

ψ = ψω + ψp, (2.10)

where ψp is the homogenous solution (corresponding to the irrotational flow) and

ψω is the particular solution (corresponding to the rotational flow). ψp is chosen

such that the boundary conditions are satisfied. Thus, the velocity field can be split

into two parts, ~Vω, the rotational velocity arising from ψω and ~Vp, the potential part

from ψp. Since ~Vp is irrotational, there exists a corresponding potential function,

φ, satisfying ∇2φ = 0, that can be used to obtain the velocity field. Therefore,

~V (~r, t) = ~Vω + ~Vp = ~Vω + gradφ (2.11)

The manner in which ~Vp is found is discussed in section 2.2.3. This section discusses

how ~Vω is obtained.

If G(~x) is the Green’s function for the −∇2 operator,

ψω =

∫

Rn

G(~x− ~x′)ω(~x′)dnx′ = G ∗ ω (2.12)

where ∗ denotes convolution. In two-dimensions, n = 2 and dnx′ = dx′ dy′. From

equation (2.8),

~Vω = ((∂y,−∂x)G) ∗ ω

= K ∗ ω

=

∫

Rn

K(~x− ~x′)ω(~x′)dnx′. (2.13)

This equation is the Biot-Savart law. K is called the Cauchy velocity kernel. For
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the two dimensional case, K is given as

K(x, y) =
(−y, x)

2πr2
, (2.14)

where r2 = x2 + y2. In two-dimensions it is convenient to use complex notation.

If z = x + iy is the complex co-ordinate, with i =
√−1, the Cauchy kernel in

complex co-ordinates is given by

K(z) = u− iv =
−i

2πz
. (2.15)

Using equation (2.14) or (2.15) in equation (2.13), the velocity field is obtained

from the vorticity field. It is to be noted that the above Cauchy velocity kernel

corresponds to the velocity field of a point vortex with unit strength and located

at the origin. This velocity field is singular at the origin and the corresponding

vorticity field is given by the Dirac distribution (referred to commonly as the delta

function).

The integral in equation (2.13) can be discretized to obtain a numerical approx-

imation of the velocity field. If N point vortices, at positions ~xj, with circulations

Γj, are used to discretize the vorticity field then the discretized vorticity is given

by

ω(~x) =
N∑

j=0

δ(~x− ~xj)ωjh
2 =

N∑
j=0

δ(~x− ~xj)Γj, (2.16)

where δ(~x) is the Dirac distribution, ωj is the vorticity at the position ~xj, h is the

grid spacing used to discretize the vorticity. Hence, the discretized velocity field

is given by

~Vω(~x, t) =
N∑

j=0

K(~x− ~xj)Γj. (2.17)

This is called the “point vortex method”. The method is known to be second

order (Goodman et al., 1990) accurate. However, numerical problems with the

method requires desingularization of the Cauchy kernel. This is discussed in the

next section.
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2.2.2 Desingularized velocity kernels

The Cauchy velocity kernel poses computational difficulties1. The singular veloc-

ity field of the point vortices introduces large errors in the vicinity of the point

vortices (Beale and Majda, 1985). This motivates the use of desingularized ve-

locity kernels. Additionally, higher order accuracy is possible if vortex blobs are

used.

Chorin (Chorin, 1973; Chorin and Bernard, 1973) proposed the use of a mod-

ified, desingularized velocity kernel, Kδ, to obtain the velocity field as

~Vω(~x, t) =
N∑

j=0

Kδ(~x− ~xj)Γj. (2.18)

This desingularized kernel can be obtained by introducing smoothing functions fδ,

which are approximations to the Dirac distribution. Consider the function,

fδ(r) =
1

δ2
f(r/δ)

where f is a symmetric, real valued smoothing function that approaches a Dirac

delta as the parameter δ → 0 such that

2π

∫ ∞

0

f(r)rdr = 1.

The parameter δ is called the core radius or cutoff radius. The smoothing function

fδ is also called a core function or cutoff function. The smoothing function need

not be symmetric but usually is assumed to be so. In the following, it is assumed

to be symmetric.

The cutoff function serves to obtain a better approximation of the vorticity

field. The discretized vorticity is obtained similar to equation (2.16) as

ω(~x) =
N∑

j=0

fδ(~x− ~xj)ωjh
2. (2.19)

1 See Krasny (1987, p. 124) for a discussion of the problems with point vortices as applied to
the simulation of the evolution and roll-up of vortex sheets.
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The desingularized velocity kernel is found by convolving the cutoff function with

the Cauchy kernel which results in,

Kδ = K ∗ fδ.

Following the derivation in Beale and Majda (1985), a simple relationship

between the Cauchy kernel and the smoothing function can be obtained if fδ is

radially symmetric. Define Gδ = G ∗ fδ. Since G is the Green’s function for

the −∇2 operator it is easy to see that ∇2(G ∗ fδ) = −fδ. Since fδ is radially

symmetric,

∇2Gδ =
1

r

∂

∂r
(r

∂Gδ

∂r
) = −fδ.

Therefore,
∂Gδ

∂r
= −1

r

∫ r

0

fδ r′ dr′ (2.20)

From equation (2.20), and (2.13) it is easy to see that

Kδ = (∂y,−∂x)Gδ

=

(
y

r
,
−x

r

)
∂Gδ

∂r

=
(−y, x)

2πr2
2π

∫ r

0

fδ r′ dr′

= K(x, y) k(r) (2.21)

Therefore, for a given smoothing function, fδ, it is possible to obtain k(r). With

this, the desingularized velocity field can be obtained using equation (2.18). This

discretization of the vorticity and velocity field results in the “vortex blob method”.

Some commonly used smoothing functions are given in Table 2.1. The velocity

field induced by these blobs are all radially symmetric and some of them are

plotted in Fig. 2.3. In the figure, the blob core radius δ = 0.5. The Chorin blob

is a second order blob and is often used in implementations of the random vortex

method. Many deterministic vortex method implementations use the Beale Majda

2nd order blob.
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Table 2.1: Smoothing functions

Blob type fδ(r) k(r)

Chorin
(2πrδ)−1 r < δ

0 r ≥ δ
r/δ r < δ
1 r ≥ δ

Saffman (Rankine)
(πδ2)−1 r < δ

0 r ≥ δ
(r/δ)2 r < δ

1 r ≥ δ
Krasny δ2/(π(r2 + δ2)2) r2/(r2 + δ2)

Beale Majda (2nd order) e−r2/δ2
/(πδ2) 1− e−r2/δ2

Beale Majda (4th order) (2e−r2/δ2 − 0.5e−r2/2δ2
)/(πδ2) (1− 2e−r2/δ2

+ e−r2/2δ2
)
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Figure 2.3: Velocity field due to different vortex blobs.
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It is to be noted that the accuracy and order of convergence of the vortex blob

method are related to the order of the smoothing function. Puckett (1991) and

Cottet and Koumoutsakos (2000) provide exhaustive references and material on

the topic. Thus, the velocity field, ~Vω, is obtained using desingularized velocity

kernels.

2.2.3 Boundary conditions

If the vorticity field has compact support or is rapidly decaying2, the velocity

field induced by the vorticity field will be zero at infinity. Therefore the infinity

boundary condition (2.7e) will be identically satisfied.

The inversion of the vorticity equation (2.9) to obtain the rotational part of

the velocity field, ~Vω, was discussed in sections 2.2.1 and 2.2.2. The resulting ve-

locity field will in general violate the no-penetration boundary condition in equa-

tion (2.7f). As discussed in section 2.2.1, a potential velocity, ~Vp, is to be added

to the rotational velocity field to satisfy the no-penetration boundary condition.

In section 2.2.1 it was also seen that this velocity field can be expressed as the

gradient of a potential, φ, that satisfies the Laplace equation.

A commonly used approach used to satisfy the no-penetration condition is the

method of images. For example, consider a point vortex in the complex plane

having circulation Γ, with position z, in the presence of an infinite wall along

the x-axis. The no-flow boundary condition across this wall is readily ensured

by adding an image vortex having strength −Γ, and position z∗, where z∗ is the

complex conjugate of z. Similarly, if the point vortex is in the presence of a circular

cylinder of radius, R, the no-flow condition is satisfied by adding an image vortex

with circulation −Γ at position R2/z∗. More complex geometries can be handled

by using conformal transformations. This has probably been the most widely

used technique (Cheer, 1989; Sethian and Ghoniem, 1988; Ghoniem and Gagnon,

1987; Ghoniem and Ng, 1987; Baden and Puckett, 1990; Shashidhar, 1998) in the

past to satisfy the no-penetration boundary condition in vortex methods. The

2This is true for all problems considered in the present work.
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advantage of the method is that it satisfies the boundary condition exactly. The

disadvantages are the following.

• Cannot handle arbitrary geometries.

• Significantly increases the number of particles and is therefore inefficient.

Some researchers use a grid-based fast Poisson solver to apply the no-flow

boundary condition as done by Sethian (1984) and others (Smith and Stansby,

1988, 1989). The problem with this approach is that it necessitates the use of a

computational grid.

In the present work, tools are developed for vortex methods in the presence of

complex geometry. It would be ideal to use a grid free technique to enforce the

boundary condition. In the context of a vortex method it is also important to

be able to obtain an accurate velocity at an arbitrary point in the fluid. Panel

methods (Katz and Plotkin, 1991) are an attractive numerical technique that

satisfy these requirements. Panel methods are discussed in detail in section 3.6.

Bakhoum and Board (1996) develop an interesting geometrical method to ob-

tain solutions to Laplace’s equation. The method is designed to map the entire po-

tential field inside/outside a boundary. However, for vortex methods one requires

the potential or velocity at an arbitrary collection of points. Hence the panel

method appears more attractive for vortex methods. The authors in (Bakhoum

and Board, 1996) show that their method is much faster than the traditional panel

methods. However, the techniques described in chapter 4 make the panel method

comparably efficient. Therefore the present work uses a panel method to satisfy

the no-penetration boundary condition.

Thus, ~Vp is obtained using the panel method. This along with ~Vω gives the

total velocity field (equation (2.11)). Using this velocity field, the convective

displacement of the particles can be computed.
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2.2.4 Convective displacement of the vorticity

The incompressible Euler equations (2.7) transport the vorticity along with the

flow. Let the initial vorticity, ω0 = ω(~x, 0), be discretized into vortex blobs placed

at ~xj(0) and having circulations Γj. Then, the Euler equations are solved by com-

puting the path of these vortex blobs with their circulations remaining constant.

The convective displacement of the vortex blobs are computed using the ve-

locity field in equation (2.11). Thus, the system of ODEs describing the position

of the vortex blobs is given by,

d~xj

dt
= ~V (~xj, t)

= ~Vω(~xj, t) + ~Vp(~xj, t)

=
N∑

k=0;k 6=j

Kδ(~xj − ~xk)Γk + ~Vp(~xj, t), (2.22)

where ~Vp(~xj, t) is the potential velocity field used to satisfy the no-penetration

boundary condition. The k 6= j condition arises due to the fact that a radially

symmetric vortex blob does not induce a velocity on itself. These ODEs are

integrated as described in section 3.3. Thus, advection can be implemented.

2.3 Diffusion

The second step in the solution of the governing differential equations (2.5) is the

solution of the diffusion equation. The governing equations for diffusion are given

below.

∂ω

∂t
= ν∇2ω, (2.23a)

V (~r, t) · ês = ~VB · ês on B, (2.23b)
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Equation (2.23) is the heat equation. Its solution can be obtained by noting that

the Green’s function for the heat equation in two dimensions is given by,

G(~r, t) =
1

4πνt
e−

r2

4νt . (2.24)

Therefore the solution to equation (2.23) is given as,

ω(~r, t) =
1

4πνt

∫

R2

e−
(r−r′)2

4νt ω(~r′)dx′dy′. (2.25)

There are several ways of solving this equation in a Lagrangian framework. The

earliest of these is the random vortex method due to Chorin (1973).

2.3.1 Random vortex method

This method simulates diffusion by letting the individual vortex blobs undergo

independent random walks with the displacement obtained from a Gaussian dis-

tribution having zero mean and variance 2ν∆t. Since the method is stochastic3,

the solution is noisy and some amount of averaging (ensemble, space or time av-

eraging) is necessary to obtain smooth solutions. The method was numerically

shown to have an O(
√

ν/N) rate of convergence by Roberts (1985), where N is

the number of vortex blobs. This is a slow rate of convergence. However, as dis-

cussed in section 1.2, the method has been used to solve a variety of problems.

The idea of using a random walk to simulate diffusion is based on the fact that

the integral in equation (2.25) can be written along with equation (2.19) as,

ω(~r, t) =
1

4πνt

∫

R2

e−
r′2
4νt

N∑
j=0

fδ(~r − (~rj + ~r′))Γjdx′dy′. (2.26)

This can interpreted as the expected value of the integral taken over Gaussian ran-

dom variables ~r′ with zero mean and variance 2νt. The random walk method works

by giving each vortex blob an independent Gaussian random displacement with

zero mean and variance 2ν∆t, in each co-ordinate direction during each time step.

Since the resultant displacement of the particles is the sum of several independent

3Gardiner (1985) provides a general and detailed discussion on stochastic methods.
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normal distributions the resultant distribution is another normal distribution with

the net variance being the sum of the individual variances.

It is to be mentioned that the method described above is for the simulation

of diffusion using random walks in free space. On the surface of a solid bound-

ary, the no-slip boundary condition is to be satisfied4. This is done by releasing

new vortices of appropriate strength such that the slip is offset. Further, vortex

particles striking a solid wall during the random walk are reflected specularly.

The boundary layer region around the body can also be modeled more accu-

rately by using a vortex sheet algorithm as proposed by Chorin (1978). In order

to use this approach, the domain of the fluid, D, is split into two regions. A “sheet

region” (or sheet layer or numerical layer) around the body, Ds, where the vor-

ticity is modeled in form of vortex sheets and a “blob region”, Db, that contains

only vortex blobs.

2.4 Vortex sheets

In order to satisfy the no-slip boundary condition at each time step, vorticity is

created in the sheet layer, Ds. This vorticity is modeled in the form of vortex

sheets. The sheet region (or numerical layer) is a computational artifice. The gov-

erning equations in the numerical layer are the Prandtl boundary layer equations

and in terms of vorticity and velocity are given as,

∂ω

∂t
+ u

∂ω

∂s
+ v

∂ω

∂n
= ν

∂2ω

∂n2
(2.27a)

ω = −∂u

∂n
(2.27b)

∂u

∂s
+

∂v

∂n
= 0 (2.27c)

(u, v) = (0, 0) on B (2.27d)

lim
n→∞

u(s, n, t) = Ue(s, t), (2.27e)

4The no-penetration condition is satisfied in the advection step.
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where Ue(s, t) is the velocity component along s at the edge of the numerical layer,

s, n are the co-ordinates tangential and normal to the boundary respectively and

u, v are the velocity components along these directions. The vorticity in this region

is approximated by sheets of vorticity which are straight line segments. Then,

ω(s, n) =
∑

j

γjbl(s− sj)δ(nj − n), (2.28)

where γj is the strength of the vortex sheet, l is the length of the sheet and (sj, nj)

are the co-ordinates of the center of the sheet and δ(n) is a Dirac distribution. bl is

the smoothing function. Chorin (1978) proposed the use of a hat or tent function

for bl. The present work uses both a tent and a Haar function. The Haar function

is defined as follows,

bl(s) =





1, |s/l| < 1/2,

0, otherwise.
(2.29)

The tent function proposed by Chorin is given by,

bl(s) =





1− |s/l| , |s/l| < 1,

0, otherwise.
(2.30)

Note that for the tent function, the total sheet length is 2l.

The velocity field produced by the sheets is given as,

u(s, n) = Ue(s, t) +
∑

j

γjbl(s− sj)H(nj − n), (2.31)

where Ue(s, t) is the tangential component of the velocity at the edge of the nu-

merical layer. Equation (2.31) is obtained by integrating equation (2.27b) where

ω is given by equation (2.28). H(n) is the Heaviside function defined as

H(n) =





1 n > 0,

0 otherwise.
(2.32)

The vertical velocity component, v, is found by using equations (2.27c) and
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(2.27d) to get,

v(s, n) = −
∫ n

0

∂u(s, n)

∂s
dn. (2.33)

Using equation (2.31) and approximating ∂u
∂s

using a central difference, v is ob-

tained as,

v(s, n) = −∂Ue(s, t)

∂s
n− 1

l

∑
j

γj (bl(s + l/2− sj)− bl(s− l/2− sj)) min(n, nj).

(2.34)

More details on the derivation may be had from Chorin (1978), Puckett (1991)

and also Shashidhar (1998).

There are complications involved in the computation of v using equation (2.34).

Unlike a vortex blob, for which the velocity needs to be found at a single point

(its center), the sheet requires the knowledge of the velocity at its center and two

additional points at, (sj ± l/2, nj). The approach of using a central difference

is inelegant and also appears to be against the general spirit of vortex methods.

Additionally, it is well known that v in the boundary layer is usually much smaller

than u. Consequently, in the present work v is not computed. If hnum is the

height of the numerical layer, the v velocity of a sheet at (s, n) is set equal to

the v velocity at the point (s, hnum). This simplifies the implementation of vortex

sheets.

For future reference the following sheet types are defined.

• Sheet1 – this sheet uses the Haar function for bl as defined in equation (2.29).
Equation (2.34) is not used to compute the v velocity.

• Sheet2 – Similar to Sheet1 except that the tent function for bl as defined in
equation (2.30) is used.

• Sheet3 – Similar to Sheet1 with v computed using equation (2.34).

• Sheet4 – Similar to Sheet2 with v computed using equation (2.34).

Of these four sheets, only Sheet1 and Sheet2 are considered in the present

work. Neglecting v is justified in this case because hnum is usually chosen to be

very small.
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Figure 2.4: Illustration of a vortex sheet.

A typical sheet in the numerical layer is illustrated in Fig. 2.4. The height

of the numerical/sheet layer, hnum is sometimes assumed to be k
√

2ν∆t, where

k is a constant. This is a multiple of the diffusion length scale. Another scheme

involves choosing hnum as a fraction of an estimated maximum boundary layer

height. These possibilities are explored in chapter 7.

The boundary layer equations (2.27) are split into a convection and diffusion

step as done with the NS equations (2.5). In order to convect the sheets, the

velocity of the sheets are computed using the expressions in equations (2.31) and

(2.34). The numerical implementation of the convection is described in section 3.3.

The sheets are then diffused using random walks. In this case, since the diffusion

is only along the n direction, the random walk is performed only along the n

direction.

In this fashion vortex sheets are used to discretize the vorticity in the numerical

layer.

Thus the governing differential equation (2.5) is solved using the hybrid RVM.

The numerical implementation of the scheme is described in detail in the next

chapter.
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CHAPTER 3

NUMERICAL IMPLEMENTATION

In the previous chapter the relevant theoretical details of the random vortex

method were outlined. This chapter explores the numerical implementation of

the random vortex method.

3.1 Operator splitting

As mentioned in section 2.1, the vortex method is typically solved in two fractional

steps, advection and diffusion. This splitting of the operator involves an error. Let

the solution of the advection equation be obtained using the operator E(·) and

the solution to the diffusion equation using the operator H(·). Let the initial

condition be ω0 and the approximate solution at any time t be ω̃(t). Standard

viscous splitting obtains ω̃(t) as,

ω̃(n∆t) = (H(∆t)E(∆t))nω0, (3.1)

where ∆t is the time step used for the integration. Beale and Majda (1981) prove

that this type of viscous splitting involves an error of Cν∆t. C depends only on

the total time interval and the smoothness of the flow. An alternative scheme

called Strang-discretization or Strang-type splitting approximates the solution to

the NS equations by solving,

ω̃(n∆t) = (H(∆t/2)E(∆t)H(∆t/2)nω0. (3.2)

The error involved in Strang-type viscous splitting is proved (Beale and Majda,

1981) to be Cν∆t2.

In the present work both schemes are explored. Computationally, Strang-

type splitting is slightly more expensive but allows for larger ∆t values. The two



approaches are studied numerically in chapter 7.

3.2 Discretization of vorticity

The vorticity field is to be discretized into vortex blobs and vortex sheets. In

applications where a known vorticity field exists the vorticity field is represented

in the form of vortex blobs. Equation (2.19) is reproduced below,

ω(~x) =
N∑

j=0

fδ(~x− ~xj)ωjh
2.

The value of ωj can be found by either setting ωj = ω(~xj)
1 or by solving the

system of equations for the unknown ωj values based on the known ω(~x) and fδ

as done by Ghoniem et al. (1988) and others (Krishnan and Ghoniem, 1992).

In the present work, the problem studied is the flow past an impulsively started

cylinder where there is no initial vorticity field. Vorticity is released in the form of

vortex sheets from the surface of the body. The numerical method used to release

the sheets is described in section 3.4.

3.3 Advection

As discussed in section 2.2.4, the solution of the advection equation involves solving

a set of ordinary differential equations (ODEs). The solution of these ODEs

requires the knowledge of the velocity of the particles. The velocity due to the

vortex blobs is obtained from equation (2.18). The velocity due to the sheets

is obtained from equations (2.31) and (2.34). The computation of the velocity

field due to the blobs can be accelerated using a fast summation technique. The

AFMM (Carrier et al., 1988) is implemented and used for this purpose. This

technique is described in detail in appendix A. The velocity field of the sheets can

also be accelerated using the technique described in section 5.2. The velocity field

1This scheme and an alternative are discussed by Perlman (1985).
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is also required to satisfy the no-penetration boundary condition. This boundary

condition is satisfied using a panel method. The method is described in section 3.6.

Once the velocity field due to the blobs, sheets and the panel method are

known, it is possible to integrate the ODEs using an appropriate numerical scheme.

Thus, the new positions of the particles are computed. In the present work these

ODEs are integrated using a second order Runge-Kutta scheme as follows,

~x′j(t + ∆t/2) = ~xj(t) + ~V (~xj, t)∆t/2 (3.3a)

~xj(t + ∆t) = ~x′j(t) + ~V (~x′j, t + ∆t/2)∆t. (3.3b)

~xj are the positions of the particles and ~V (~xj, t) represents the velocity of the

particles. Higher order schemes can also be used. The Runge-Kutta fourth order

scheme is also constructed in a similar fashion to the above. However, for most of

the simulations in the present work the second order Runge-Kutta scheme is used.

The implementation of the second order Runge-Kutta scheme for the vortex

sheets is tricky since sheets that leave the numerical layer are to be converted to

blobs and vice versa. Since this is common to both diffusion and advection, a

discussion is provided in section 3.4.3.

3.4 Diffusion

As discussed in section 2.3.1, the random vortex method simulates diffusion by

making each vortex particle perform a random walk. For vortex blobs the displace-

ments are along the co-ordinate directions. For the vortex sheets the displacement

is along the local normal.

Computationally, a pseudo-random number generator is used to generate the

random numbers. In the present work the random number generator of L’Ecuyer

with a Bays-Durham shuffle (Press et al., 1992) is used to generate uniform devi-

ates. This generator has a period greater than 2 × 1018 which suffices for all the

calculations performed in the present work. Gaussian deviates are generated from
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the uniform ones using the Box-Muller transformation (Press et al., 1992).

3.4.1 No-slip boundary condition

The no-slip boundary condition is satisfied by releasing vortex sheets every time

the diffusion equation is solved. Numerically, the boundary is split into N equally

sized linear segments. The centers of each of these segments (control points) are

used to satisfy the no-slip boundary condition. The velocity due to all the con-

stituents (blobs, sheets, free stream etc.) are computed at these points. Vortex

sheets are introduced at these locations to satisfy the no-slip boundary condition.

If the standard viscous splitting approach, equation (3.1), is used, the newly in-

troduced sheets are only diffused in the first time interval. From the next time

step onwards, they are both convected and diffused.

Let γmax be the maximum magnitude of the strength of any vortex sheet. Let

us be the slip velocity at a particular control point. Let n be the number of sheets

released at the control point. In this work, the new sheets are created in three

different ways:

1. n = [|us|/γmax], with each sheet having magnitude of strength γmax. Where
[x] is the largest integer less than x. This is called sheet release style 1.

2. n = [|us|/γmax + 0.5], with each sheet having a magnitude of γmax. This is
called sheet release style 2.

3. n = [|us|/γmax], with each sheet having magnitude γmax plus one additional
sheet having magnitude of strength, us − nγmax. This additional sheet sat-
isfies the no-slip condition exactly. This is called sheet release style 3.

The sign of the strength of the sheets are chosen so as to nullify the slip velocity.

In chapter 7 these three sheet release styles are studied numerically.

3.4.2 Sheet tagging

Equation (2.27a) indicates that the diffusion is independent of the s direction.

This implies that a vortex sheet introduced along the body surface diffuses as a
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single unit. In order to perform this correctly, the following tagging procedure

is performed. Consider the computation at a particular time, t. At a typical

control point let q be the number of new sheets being released. Each of these new

sheets is tagged with a sequence of integers in the range m + 1, . . . , m + q where

m is the largest tag value of the old sheets. This process is repeated for all the

newly created sheets with m being the same for all the control points. After the

tagging is complete, when displacing sheets with the random displacement along

n, all sheets with the same tag are given the same random displacement. In this

manner sheets at different spatial locations are made to diffuse as one single unit.

Puckett (1989) numerically shows that sheet tagging does not improve the

accuracy of the vortex sheet method and recommends that the method need not

be used. In section 7.7 this is explored and the result obtained is similar in that

no special improvement is seen when tagging is performed.

3.4.3 Conversion of sheets to blobs

As a sheet moves it will eventually leave the numerical layer. Similarly, a moving

blob is likely to enter the numerical layer. Any sheet having length λ, that leaves

the numerical layer is converted to a Chorin blob (see Table 2.1) of strength,

Γ = γλ, with a core radius δ such that there is no jump in the velocity at the

control point on the boundary due to the conversion. That is,

Γ

2πδ
=

γ

2

since Γ = γλ,

δ = l/π

Since the Chorin blob is used, the velocity inside the core region is constant in

magnitude and this conversion may be performed even if the core intersects the

boundary as would happen if hnum < δ. Similarly if a blob enters the numerical

layer it is converted into a sheet with a corresponding strength and length. It is

given a new tag value.
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Figure 3.1: Reflection and conversion of vortex sheets and blobs.

As the sheets and blobs are given random displacements they are likely to

strike the solid wall. If this happens, they are all reflected specularly, i.e. if the

solid wall is along the x-axis and the particle’s position after being randomly

displaced is at (x, y), then its reflected position is (x,−y). Reflecting particles

in this fashion correctly and efficiently for complex geometries is not trivial. An

efficient algorithm for this is discussed in section 5.1. The process of conversion

and reflection is illustrated in Fig. 3.1.

As mentioned earlier, the sheets and blobs are convected using a second order

Runge-Kutta scheme. As seen in equation (3.3a), this involves computing an

intermediate set of positions for the blobs and sheets. It is possible for sheet-blob

conversion to occur at this point. If this happens, these converted sheets and

blobs are converted back to their original state and then displaced in the final

step, equation (3.3b). Due to the complexity of the process, this is generally not

done in traditional RVM implementations. In the present work no attempt has

been made to test if this indeed improves accuracy. However, multi-step methods

are used when convecting the vortex sheets and this procedure is used to handle

the sheet-blob conversions.

3.4.4 Other techniques to satisfy no-slip

For completeness, it is to be noted that other researchers use different approaches

to handle the no-slip condition. Chorin (1973), Lin et al. (1997), Clarke and
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Tutty (1994), Shankar (1996) and various others (Smith and Stansby, 1988, 1989)

generate a row of vortex blobs on the surface that satisfy the no-slip boundary

condition. Koumoutsakos et al. (1994) and others (Koumoutsakos and Leonard,

1995; Shiels, 1998; Cottet et al., 2000; Ploumhans and Winckelmans, 2000) on the

other hand, generate a vortex sheet at the surface and then diffuse this vorticity

to nearby vortex blobs by simulating the diffusion of this sheet in a semi-infinite

domain. This approach yields accurate results in comparison to schemes that

release vorticity in the form of vortex blobs above the boundary. Bernard (1995)

introduces a deterministic sheet method and also experiments with a different type

of sheet whose velocity field is computed by integrating the Biot-Savart law on the

sheet element. This is similar to the rectangular anisotropic vortex sheet elements

of Huyer and Grant (1996). The advantage with this type of sheet element is that

it behaves like any other vortex element and induces a global velocity field. Teng

(1982) uses an elliptically shaped blob core. Such blobs can be used in the solution

of the NS equations and therefore can be used inside and outside the numerical

layer. However, it appears that other researchers have not used this type of blob

in simulations of the NS equations. Marshall and Grant (1996) also develop a

method to find the velocity field due to anisotropic vortex blobs. They find that

the computation of the velocity field is very expensive. However, as compared to

the isotropic blobs, much fewer anisotropic elements are needed to obtain good

agreement with the Blasius boundary layer solution.

Summers (2000) provides an interesting discussion on boundary conditions

for viscous vortex methods using the idea of Hodge decomposition and impulses

generated at the wall. Impulses differ from the rotational velocity (~Vω) by the

gradient of a scalar function. The boundary condition at the wall is satisfied by

the generation of impulses at the surface. Two different schemes are considered

and one of these correspond to the generation of vortex sheets at the surface.

These vortex sheets are like the anisotropic elements discussed above. This gives

vortex sheets an interesting impulse based interpretation. Summers (2000) also

discusses another approach where a vortex-dipole distribution at the surface is

generated to satisfy the boundary condition. Cortez (2000) uses impulse elements

to simulate the motion of thin flexible boundaries. The impulse elements are
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created because of forces generated at the boundaries. This serves as a means

to connect kinematics to dynamics. Hence, impulse elements offer an interesting

approach to satisfy the boundary conditions for vortex methods.

In the present work the traditional vortex sheet algorithm introduced by Chorin

(1978) and described in earlier sections is used to satisfy the no-slip boundary

condition.

In the next section, a simple technique used to reduce the number of interacting

particles is described.

3.5 Merging and annihilation of vorticity

The RVM simulates diffusion by giving vortex particles a random displacement.

During a numerical simulation it is often found that large numbers of particles

having a vorticity of equal magnitude and opposite sign are very close to each

other. These particles effectively contribute nothing to the simulation since they

cancel each other’s effects. These particles are called “parasitic particles” (Choi

et al., 1988). In chapter 7 it is numerically demonstrated that these parasitic

particles make the solution inaccurate. In the present work, parasitic particles

are removed by annihilating any two particles of opposite sign having the same

magnitude of circulation provided they lie within a distance of Ra λ of each other.

λ is the length of a vortex sheet and Ra is a non-dimensional number. If the two

particles are of opposite sign and are not of equal strength, the particle with a

smaller strength is deleted with the larger particle absorbing its strength. This

annihilation incurs a small error in the moments of the vorticity. However, as

will be demonstrated in later chapters, the benefits of annihilation more than

compensate for this loss of accuracy.

If there are a large number of particles near each other having the same sign but

with small circulations, then they can be merged to reduce the number of particles.

While merging the particles, it is possible to conserve the first moment of the

vorticity by moving the position of the merged particle appropriately. Consider
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two similarly signed particles having strengths, Γ1, Γ2 and positions ~x1, ~x2, that are

within a prescribed distance, Rm λ with |Γ1+Γ2| < γmaxλ. These two particles are

merged and the merged blob’s strength is Γ1+Γ2 with position (Γ1~x1+Γ2~x2)/(Γ1+

Γ2). A more sophisticated scheme specifically tailored to Gaussian vortices is

presented by Rossi (1997) where the second moment is also conserved by varying

the core-radius of the merged blob. However, in the present work the simpler

scheme is used.

The next section describes the panel method that is used to satisfy the no-

penetration boundary condition.

3.6 The panel method

Panel methods provide a means to solve Laplace’s equation in two and three di-

mensions2. They can be used effectively to satisfy the no-penetration condition

discussed in section 2.2.3. Panel methods reduce the dimensionality of the prob-

lem by one and in two dimensions only require a one dimensional surface grid.

The method works by discretizing the body into elements called panels. An un-

known amount of singularity is distributed on each of these panels. The unknown

strengths of these singularities are solved for using an appropriate boundary con-

dition. Thus, the singularity distribution is obtained as the solution of a boundary

value problem. The geometry of the panels can be linear, parabolic or higher order.

For the singularity distribution, sources, doublets or vorticity can be used. The

singularity can be lumped at a point but this results in very low accuracy. Usually

a constant, linear or a higher order function is used. The boundary conditions used

can be represented either in terms of the normal velocity on the surface, called

the Neumann condition, or in terms of the potential/stream function on the body,

called the Dirichlet condition. Katz and Plotkin (1991) provide a comprehensive

overview of panel methods.

2The panel method has also been used to study the evolution of vortex sheets (Peters and
Hoeijmakers, 1995).
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Yon (1990) performs an extensive study of nine different panel methods and

shows that for difficult geometries such as airfoils with cusped trailing edges or

very thin airfoils, only the Neumann formulation using a linear distribution of

vorticity produced satisfactory results. A distribution of doublets could have also

be used to simulate lifting bodies. However, it can be shown that a polynomial

distribution of doublets of order q can be represented by a distribution of vorticity

of order q−1. Another advantage of using a distribution of vorticity is that it can

be used to explain the kinematic motion of the rigid body in addition to solving

the fluid flow (Rajan, 1994). Based on the above reasons and the fact that using

a vorticity distribution is natural for a vortex method, the present work uses a

vorticity distribution.

The boundary condition can be applied using either a no-penetration condition

or a no-tangency condition just inside the body. This condition is to be applied at

a specific location on each panel called the “control point”. For the no-penetration

condition one enforces that the normal component of the velocity at the control

point should be the same as that of the body. For the no-tangency condition the

tangential component of the velocity is equated to that of the tangential velocity

of the body. It can be shown (refer Shiels (1998) for a sample proof) that the

no-tangency condition automatically satisfies a no-penetration condition. The

no tangency condition also results in better conditioned matrices. The problem

with the no-tangency condition is that thin shapes can cause problems requiring

corrections (Lewis, 1991). It is also not possible to incorporate the no-tangency

condition for bodies with zero thickness (like a zero thickness flat plate). For this

reason the present work uses the more traditional no-penetration condition.

In the recent past, several researchers (Clarke and Tutty, 1994; Lin et al.,

1997; Kim and Flynn, 1995; Takeda et al., 1999; Taylor and Vezza, 1999a,b) have

employed the panel method in the context of vortex methods. Clarke and Tutty

(1994) and Takeda et al. (1999) use a parabolic panel method where the geom-

etry of the body is discretized into parabolic segments. The others use a linear

approximation for the geometry. The present work develops a very accurate cubic

panel method.
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In the following, the velocity and potential due to a linear vortex panel is

derived. The issues with this approach are considered and then a cubic panel

method is developed. These derivations are largely reproduced from the work of

Ramachandran et al. (2000a, 2003).

3.6.1 Linear panels and the edge effect

θ

z2

0

Flat Panel

y

x

z1

z=x+iy
z plane

λ

Figure 3.2: A flat panel in the complex plane.

0

γ
γ1 2

ς

λ

x’

y’

z’ = x’ + iy’

Figure 3.3: A flat panel in the z′ = (z − z1)e
−iθ plane.

As mentioned earlier, the present work uses a vortex panel method. The body
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is split into a collection of linear segments called panels. As done by the authors in

(Ramachandran et al., 2000a), a linear distribution of vorticity is chosen on each

panel. A panel with a linear (flat) geometry, having length λ, is considered. This

is illustrated in Fig. 3.2. The local co-ordinate system with respect to the panel

shown in Fig. 3.3 as the z′ plane. γ is the vorticity at any point on the panel. γ1

and γ2 are the values of γ at the ends of the panel. The vorticity γ at any point

on the panel (ζ) is given by,

γ = γ1 +
γ2 − γ1

λ
ζ. (3.4)

The velocity due to the panel at a point z′ is obtained as follows,

V (z′) = u′ − iv′ =
−i

2π

∫ λ

0

γ dζ

z′ − ζ
(3.5)

where i =
√−1. Integrating the above equation after substituting equation (3.4)

and transforming the velocity back to the z plane gives the velocity due to the

panel at an arbitrary point z as,

V (z) = u− iv

=
−i

2π

{
γ1

[(
z′

λ
− 1

)
ln

(
z′ − λ

z′

)
+ 1

]
(3.6)

−γ2

[
z′

λ
ln

(
z′ − λ

z′

)
+ 1

]}
e−iθ.

where z′ = (z − z1)e
−iθ. In a similar fashion the complex potential due to the

linear vortex panel can be found as,

Φ(z) = φ + iψ

=
−i

2π

∫ λ

0

γ ln(z′ − ζ) dζ

=
iγ1

2π
[(z′ − λ) ln(z′ − λ)− z′ ln(z′) + λ] (3.7)

− i(γ2 − γ1)

4πλ

[
(λ2 − z′2) ln(z′ − λ)− λz′ − λ2

2
+ z′2 ln(z′)

]
.
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Figure 3.4: A cubic panel having chord length λ in the z′ plane.

It can be seen that equation (3.6) for the velocity due to the flat panel diverges

at the end points, z1 and z2. For a curved body, the singularity is not nullified

by the adjacent panels due to the linear discretization of the body geometry and

the consequent discontinuity in the slopes between two adjacent panels. This is

known as the “edge effect”. This edge effect would exist even if a higher order

singularity distribution were used on the surface of the panel.

3.6.2 Cubic panels

Ramachandran et al. (2000a) show that the edge effect can be removed if the

body geometry is discretized in terms of cubic panels. In this approach, the slope

is continuous across adjacent panels (if the body shape is smooth). Let the chord

of the cubic panel be oriented along the x′-axis. As shown in figure 3.4, let ζ and

η respectively be the x′ and y′ coordinates of the panel surface. Being a cubic,

the equation of the panel is given by η = a1ζ + a2ζ
2 + a3ζ

3. a1, a2 and a3 depend

on the slopes of the panel at the end points and the chord length, λ. To keep the

integral tractable, the vorticity is distributed on the surface of the panel but is

assumed to be linear in ζ. The equation for the velocity due to such a panel at a
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point z′ is given by,

V (z′) =
−i

2π

∫ λ

0

(γ1 + kζ)

(z′ − (ζ + iη))
dζ

=
−i

2π

∫ λ

0

(γ1 + kζ)

(z′ − ζ − i(a1ζ + a2ζ2 + a3ζ3))
dζ

=
k

2πa3

∫ λ

0

(ζ + γ1/k)(
ζ3 + a2

a3
ζ2 + (a1−i)

a3
ζ + iz′

a3

)dζ (3.8)

where k = (γ2−γ1)/λ. In order to obtain the solution, the cubic in the denominator

is expressed as,

ζ3 +
a2

a3

ζ2 +
(a1 − i)

a3

ζ +
iz′

a3

= (ζ − a)(ζ − b)(ζ − c) (3.9)

where a, b and c are the complex cube roots of the cubic. These roots are com-

puted using the algorithm given in (Press et al., 1992). After obtaining the roots,

equation (3.8) is integrated using the method of partial fractions. After integration

and simplification, the velocity due to the cubic panel is obtained as

V (z) =
−γ2

2πa3λ

[
a log

(
a−λ

a

)

(a− c)(a− b)
+

b log
(

b−λ
b

)

(b− c)(b− a)
+

c log
(

c−λ
c

)

(c− a)(c− b)

]
e−iθ

(3.10)

− γ1

2πa3λ

[
(λ− a) log

(
a−λ

a

)

(a− c)(a− b)
+

(λ− b) log
(

b−λ
b

)

(b− c)(b− a)
+

(λ− c) log
(

c−λ
c

)

(c− a)(c− b)

]
e−iθ.

θ is the angle between the chord of the panel and the x-axis.

The complex potential due to a cubic panel is given by,

Φ = φ + iψ =
−ik

2π

∫ λ

0

(ζ +
γ1

k
) ln (ia3(ζ − a)(ζ − b)(ζ − c)) dζ

which upon simplification and integration becomes

Φ =
−iλ

4π
(γ1 + γ2) ln(−ia3) + I1 + I2 + I3 (3.11)
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where

I1 =
−ik

8π

[
(λ− a)2(2 ln(λ− a)− 1)− a2(2 ln(−a)− 1)

]

− ik

2π
[(a + d)((λ− a)(ln(λ− a)− 1) + a(ln(−a)− 1))] ,

and d = γ1/k. I2 and I3 are obtained from I1 by replacing a respectively with b

and c.

Care must be taken in the implementation of the cubic panel method. If the

panel is parabolic (or close to parabolic), a3 → 0, and there can be severe numerical

errors in the evaluation of the velocity and complex potential. Similarly, if the

panel is linear, care must be taken to avoid numerical problems with a small value

of a2. In the present work, if the coefficients in the cubic equation are very small

then an appropriate parabolic or linear panel velocity is used.

3.6.3 Solving the boundary value problem

From the known expression of the velocity field due to a single panel it is easy

to create a system of linear equations for the unknown values of γ on the panel

surface. The solution of this linear system of equations gives the solution of the

boundary value problem. Let Np be the number of panels. Let the velocity field

due to a panel, i, at the j’th panel control point be ~Vij. The following set of

equations are obtained by setting up Np no-penetration boundary conditions, one

for each panel,
Np∑
i=0

~Vij · ênj = (~VBj − ~Vj) · ênj, (3.12)

where ênj is the unit normal vector at the control point of the j’th panel. ~VBj

is the velocity of the solid surface at the j’th panel control point and ~Vj is the

velocity due to the other constituents of the flow (vortex blobs, vortex sheets, free

stream etc.). Hence, the quantities in the right-hand side of equation (3.12) are

known. ~Vij’s are governed by either equation (3.6) or (3.10) depending on the

panel geometry. These involve the unknown vorticity of the panel, γ. For a linear

distribution of vorticity there are two unknown strengths per panel, γ1 and γ2.
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Figure 3.5: Vorticity distribution for different types of panel attachments.

Depending on the geometry of the body, there are simplifying assumptions

one can make regarding the vorticity at the edge of two adjacent panels. Some of

the important possibilities are illustrated in Fig. 3.5. Consider the cases (a) and

(b) in the figure. Clearly, if only two panels are attached at a particular point,

there cannot be a jump in the vorticity. For this case, adjacent panels share the

same value of γ at their attachment point. If there are more than two panels

attached at a point there are complications. For the case (c) shown in Fig. 3.5,

it is evident that the point where panel C is attached to panels A and B is a

stagnation point due to the acute angle between the panels. This requires that

the value of γ of panel C at the point be zero. On the other hand the region above

panels A and B is not a stagnation region since the angle between the panels is

obtuse. Additionally, the value of vorticity there must also be continuous. Hence,

the panels A and B share a common value γ2. For the case (d) the point where all

the panels A,B,C and D meet is a stagnation point. Hence, the value of γ for all

the panels at that point is zero. Such cases introduce difficulties in the solution

of the system of equations (3.12). The different possibilities discussed above are
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listed below.

• If the body is a simple closed surface, there are Np boundary conditions and
Np unknowns as illustrated by case (b) of Figure 3.5.

• If the body is an open arc, like a zero thickness flat plate, there are Np + 1
unknowns and only Np boundary conditions. This is illustrated in case (a)
of Figure 3.5.

• The different types of attachments of one body to another are illustrated in
cases (c) and (d) of Figure 3.5. The intensity of vorticity of the panel at
the stagnation point is zero. Hence, panels attached at a stagnation point
should have a zero vorticity intensity at the point of attachment. This is
illustrated in case (d) of Figure 3.5. Attached panels that subtends an obtuse
angle should have a continuous vorticity strength at the common point as
illustrated for panels A and B in case (c) of Figure 3.5.

In addition to the above complications, one must ensure that the circulation

around each body is equal to the amount due to the the rotation of the body. For

a non-rotating body it is zero. This is one additional equation per body. Hence,

only for the case of a simple open body are there an equal number of equations

and unknowns. Every other case has more equations than unknowns. The matrix

embodying the linear system of equations is also dense. In the present work a sin-

gular value decomposition (Press et al., 1992) is used to solve the resulting matrix

with more conditions than variables. The method is computationally expensive

but provides the best solution in the least squares sense. Also, for rigid body

motion with no relative motion between parts of a body, the generalized inverse

need be computed only once. Therefore, this approach provides the best results

and handles all the above complications without incurring a large computational

cost. If there is a need to handle moving bodies and a large number of panels,

it is practical to use an iterative matrix solver. However, this is not done in the

present work. In this manner, the no-penetration condition is accurately imposed

by computing a potential velocity field.

3.6.4 Numerical results

The cubic panel method eliminates the edge effect and is also more accurate than

the linear panel technique. In order to demonstrate this, the error in the computed
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Figure 3.6: Comparison of the error E versus distance from the surface of a circular
cylinder obtained by using flat and cubic panels.

solution is defined as,

E =

(∑N
j=1 |vj − ṽj|2∑N

j=1 |vj|2

)1/2

, (3.13)

where vj is the exact velocity, ṽj is the computed velocity and N is the number of

points at which the error is computed. Consider the flow past a circular cylinder of

unit radius as the test problem. The exact solution is compared with that obtained

by using 200 flat and cubic panels. The no-penetration boundary condition is

applied at the center of each panel. A ring of about 1000 points at a distance

r from the surface of the cylinder is considered and the value of E computed.

Figure 3.6, plots the error E versus r for both the flat and cubic panel methods.

As is evident, the cubic panel is at least two orders of magnitude more accurate.

Even extremely close to the surface, the error is relatively small. Unlike the cubic

panel case, when the flat panels are used, the error grows without bound as one

approaches the edge of the panels.

The difficulty with the cubic panel method is that for the evaluation of the
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velocity due to each panel, the three roots of a complex cubic equation are to

be computed. This makes the method computationally expensive. Based on the

present implementation, the cubic panel method is found to be about 4 times

slower than the flat panel method. Techniques to accelerate the computation of

the velocity field due to the panels are discussed in chapter 4.

Thus, the developed cubic panel method can be used to accurately satisfy the

no-penetration condition. The next section describes how the various components

described in this chapter are put together to form the random vortex method.

3.7 Computational procedure

Using the techniques described in this chapter it is possible to implement the ran-

dom vortex algorithm. For the standard viscous splitting scheme, equation (3.1),

the random vortex method proceeds as follows.

1. The slip velocity on the bounding solid surfaces is computed.

• The slip velocity is computed at a set of control points on the boundary.

• The velocity field due to the free stream, vortex blobs and vortex sheets
are computed.

• The no-penetration condition is enforced using a panel method as dis-
cussed in section 3.6.

2. The existing sheets and blobs are convected using an appropriate ODE inte-
gration scheme (usually a second order Runge-Kutta scheme, equation (3.3),
is used).

• The velocity field is computed as discussed in sections 2.2.

• The no-penetration boundary condition is satisfied using the panel
method discussed in section 3.6.

• The calculation of the velocity field is computationally expensive. Tech-
niques to accelerate this computation are discussed in the next chapter.

• As mentioned earlier in section 3.4.3, the conversion of blobs to sheets
and vice versa is handled during the intermediate steps of the integra-
tion.

3. Vortex sheets are added just above the surface of the body to offset the slip
velocity computed in step 1. This is discussed in section 3.4.1.

4. The vortex sheets and blobs are diffused as discussed in sections 2.3.1 and
3.4. Blobs and sheets are inter-converted as necessary.
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5. The vortex particles are merged and annihilated as described in section 3.5.
An efficient algorithm for this is described in section 5.4.

6. The process repeats from step 1.

The specific details of the algorithm depend on the implementation. However,

the general manner in which a vortex method simulation proceeds is explained

above. As seen, the algorithm is very elegant in the sense that it mimics the

actual physical process.

3.8 Ensemble averaging

The RVM is a stochastic method. For a particular simulation, obtaining results

from a single trial using the RVM may not produce conclusive results. Making

several trials with different seqences of random numbers3 and ensemble averaging

the trials produces much more reliable results.

Ensemble averaging brings out an important feature of the RVM viz. the ability

to trivially parallelize the trials. Given a serial random vortex code it is possible

to use the same program on another computer with a different random seed and

then ensemble the results. This provides improved accuracy in the same time.

The convergence rate of the random vortex method is slow. However, by using

this approach the accuracy can be improved considerably with minimum effort in

the same time. In section 7.7, ensemble averaged results are used to make several

recommendations on the optimal choice of various computational parameters.

3.9 The ensembled RVM

In this work a new and simple variance reduction scheme is introduced. The

method is based on the idea that ensemble averaging improves the quality of the

solutions. The method also takes advantage of the inherent parallelism in the

3The random number generator produces different sequences of random numbers when it is
seeded with a different initial value.
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RVM. The new method is called the Ensembled RVM (ERVM) and works as

follows.

Assume there are nproc processors simulating the same problem with random

number generators initialized using different seeds. At the end of nsync time steps,

the data (blobs and sheets) from the processors are assembled together. The

circulation of each particle is divided by nproc. The resulting particles are then

merged and annihilated as they would be during the course of the simulation.

Each of the processors then resumes the computations using the new distribution

of particles. Particles having a circulation of magnitude less than one thousandth

of the largest circulation (γmaxλ) are removed from the computation. Thus each

processor resumes its simulation using a more accurate intermediate solution. This

approach considerably reduces the standard deviation and errors in the solution.

In section 7.8, simulations are made using the ERVM. An explanation of how

the relevant parameters are to be chosen for optimal results is also presented.

The results show that the method works very well. In chapter 8 and specifically

in section 8.2, it is shown that the ERVM performs quite favorably as compared

with the deterministic diffusion schemes in terms of the quality of the results and

the computational effort.

In the next chapter, fast summation techniques that are central to modern

vortex methods are discussed.

56



CHAPTER 4

FAST SUMMATION TECHNIQUES

In the previous chapter an overview of the numerical implementation of the RVM

was provided. In this chapter details on the fast algorithms used to rapidly eval-

uate the velocity field due to different entities in the vortex method are provided.

Fast summation techniques are first introduced. Background material on the the-

ory and implementation of the AFMM are provided in appendix A. The extensions

of the AFMM developed in the present work are then discussed.

4.1 Introduction

The advection of vorticity requires the knowledge of the velocity field. The veloc-

ity field due to a collection of vortex blobs is given by equation (2.18). If there are

N blobs, finding the velocity at a point requires an O(N) number of operations.

Therefore, finding the velocity of all the blobs clearly requires an O(N2) number

of operations. The accuracy of vortex methods increase as N is increased, con-

sequently the O(N2) method is prohibitively expensive. This can be reduced to

either an O(N log N) or O(N) operation count by using special fast summation

techniques. The use of these techniques to perform the velocity computation is

therefore a must for a vortex method implementation.

The adaptive fast multipole method (Carrier et al., 1988) is an algorithm that

enables the computation of the velocity field in an O(N) number of operations.

The algorithm is well known. However, it is not easy to implement. In appendix A

the method is described in considerable detail. Background information on fast

summation techniques and theoretical details of the algorithm as applied to vor-

tex blobs are also presented. Appendix A also provides pseudo-code useful to

implement both body-cell treecodes (Barnes and Hut, 1986) and the AFMM. The



appendix also develops a simpler method to evaluate one of the complicated list

of cells used in the AFMM. Thus, using the AFMM described there, it is possible

to rapidly evaluate the velocity field of the vortex blobs.

This chapter focuses on the application of the AFMM to vortex panels in order

to rapidly compute the velocity due to the vortex panels on a collection of passive

particles. The key contributions are as follows.

• Extension of the AFMM to handle linear vortex panels developed in sec-
tion 3.6.1.

• An elegant generalization of the AFMM algorithm in order to handle passive
particles.

• Development of an accelerated higher order panel method using the AFMM.

• Adaptation of the “fast multipole method without multipoles” (Anderson,
1992) to the AFMM framework. Application of the method to the cubic
panels developed in section 3.6.2.

• Comparison of all the developed methods.

4.2 AFMM for linear vortex panels

The panel method can be used to apply the no-penetration solid wall condition

for the flow of an incompressible fluid. Some details of the panel method were

discussed in section 3.6.

Given the singularity distribution on the surface of the panels, it is easy to

evaluate the velocity of the body on a collection of particles. If there are M

panels and N vortex blobs, obtaining the velocity of the panels on the blobs is

an O(MN) computation. Usually the number of vortex blobs used in a vortex

method is much larger (by one or two orders of magnitude) than the number of

panels used to discretize the geometry. Despite the fact that M << N , the use

of the AFMM for the blob-blob interactions makes it much faster than the panel-

blob interactions. It is found that the time taken to evaluate the velocity of 400

linear panels on 10000 blobs is anywhere between 4 to 16 times (depending on

the type of blob) more than the computation of the velocity due to the 10000
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vortex blobs using the AFMM. The cubic panels (section 3.6.2) would require

four times as much computational effort. Hence, it is imperative to improve the

computational efficiency of the panel method. The panel-blob interactions can be

significantly accelerated by adapting the AFMM for the vortex panels as done by

Ramachandran et al. (2003). In this section, the significant results from that work

are reproduced.

The approach used is to find expressions for the multipole expansions and local

expansions for linear vortex panels. Direct velocity computations are performed

using cubic panels. This eliminates the edge effect while speeding up the com-

putation considerably. This approach is also called the “hybrid cubic/flat” panel

method. The linear vortex panels were discussed in section 3.6.1 and cubic panels

in section 3.6.2.

4.2.1 Multipole and local expansions

For the multipole expansion and local expansions, the equation for the velocity

due to a linear panel as given in equation (3.6) is considered. Upon simplification

this reduces to

V (z) = u− iv =
i

2π
A, (4.1)

where A is given as

A = (γ′2 − γ′1)
[
(z − z2)

λ′
ln(z − z2)− (z − z1)

λ′
ln(z − z1)

]

(4.2)

+ γ′2 ln(z − z2)− γ′1 ln(z − z1) + (γ′2 − γ′1),

where γ′2 = γ2e
−iθ, γ′1 = γ1e

−iθ, and λ′ = λeiθ. The terms γ1, γ2, z1, z2, λ, and θ

are shown in Figs. 3.2 and 3.3. This form is very elegant from the perspective of

the AFMM. The multipole expansion and other expressions for the terms of the

form qi ln(z−zi) are already derived by Greengard and Rokhlin (1987). All that is

required is to derive similar expressions for the terms of the form qi(z−zi) ln(z−zi).

With this, the AFMM can be applied to the linear vortex panel method. In the
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following the required expressions are derived.

A particle of singularity strength q located at z1 is considered. The “velocity”

that it induces at a point z is given as

V (z) = q(z − z1) ln(z − z1). (4.3)

This can be expressed as a multipole expansion about a circle centered at z0

as follows:

B(z) = q(z − z1) ln(z − z1)

= q(z − z0 − (z1 − z0))

[
ln(z − z0)−

∞∑

k=1

1

k

(
z1 − z0

z − z0

)k
]

= q(z − z0)

[
ln(z − z0)−

∞∑

k=1

1

k

(
z1 − z0

z − z0

)k
]

− q

[
(z1 − z0) ln(z − z0)−

∞∑

k=1

(z1 − z0)
k+1

k(z − z0)k

]
.

If there are m singularities of strength qi located at positions zi inside a circle of

radius R with center z0, then the total velocity is found from the above equation as

a simple sum of the various singularities, which after some simplification reduces

to

B(z) =
m∑

i=1

qi(z − zi) ln(z − zi)

(4.4)

= a1 + (a0(z − z0)− d0) ln(z − z0) +
∞∑

k=1

ak+1 − dk

(z − z0)k
,

where

a0 =
m∑

i=1

qi, ak =
m∑

i=1

−qi

k
(zi − z0)

k for k > 0

and

d0 =
m∑

i=1

qi(zi − z0), dk =
m∑

i=1

−qi

k
(zi − z0)

k+1 for k > 0.

Equation (4.4) is the multipole expansion for a set of m singularities that have a
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“velocity” field given by (4.3) and are located in a circle centered at z0.

In order to shift the multipole expansion about the center z0 to any other

center, (4.4) is expanded to obtain a multipole expansion about the origin, as

performed in (Carrier et al., 1988) and (Greengard and Rokhlin, 1987). Using this

it is easy to generalize the shift to any center. Hence, expanding (4.4) about the

origin and carrying out simplifications results in the following:

B(z) = a1 − a0z0 + (a0z − a0z0 − d0) ln z

(4.5)

+
∞∑

l=1

1

zl







∞∑

k=1

zl−k
0


 l − 1

k − 1


 (ak+1 − dk)


 +

zl
0

l

(
a0z0

l + 1
+ d0

)
 .

This expression governs the transfer of the multipole expansion given by (4.4) and

is similar to Lemma 2.3 in (Greengard and Rokhlin, 1987).

Given a multipole expansion about a center one has to be able to convert it

to a local (Taylor) expansion in a circular region of analyticity. Therefore, from

(4.4) a power series representation has to be obtained. (4.4) can be split into two

parts. The first part given below can be written as

a1 + (a0(z − z0)− d0) ln(z − z0) = a1 − (a0z0 + d0) ln(−z0)

+ z

(
a0 ln(−z0) +

1

z0

(a0z0 + d0)

)
(4.6)

−
∞∑

k=2

1

k

(
z

z0

)k (
a0z0

k − 1
− d0

)
,

and the second part can be written as

∞∑

k=1

ak+1 − dk

(z − z0)k
=

∞∑

k=1

ak+1 − dk

zk
0

(−1)k +
z

z0

( ∞∑

k=1

ak+1 − dk

zk
0

k(−1)k

)

(4.7)

+
∞∑

l=2

(
z

z0

)l



∞∑

k=1

ak+1 − dk

zk
0


 l + k − 1

k − 1


 (−1)k


 .

The right-hand sides of (4.6) and (4.7) are obtained using the result from
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Lemma 2.4 in (Greengard and Rokhlin, 1987). Combining (4.6) and (4.7) and

arranging the terms based on powers of z, the following power series is obtained:

B(z) = a1 − (a0z0 + d0) ln(−z0) +
∞∑

k=1

ak+1 − dk

zk
0

(−1)k

+ z

[
a0 ln(−z0) +

1

z0

(
a0z0 + d0 +

∞∑

k=1

ak+1 − dk

zk
0

k(−1)k

)]
(4.8)

+
∞∑

l=2

(
z

z0

)l



∞∑

k=1

ak+1 − dk

zk
0


 l + k − 1

k − 1


 (−1)k − 1

l

(
a0z0

l − 1
− d0

)
 .

This equation corresponds to the final equation in Lemma 2.4 in (Greengard and

Rokhlin, 1987). The first term is a constant, the second is linear in z, and the

third term includes all the higher powers of z.

The last equation needed for the AFMM is the expression that transfers the

Taylor’s series about a center z0 to that about any other center. Since this is

nothing but a transfer of a generic Taylor’s series, equation (A.9) can be used.

With equations (4.4), (4.5), (4.8), and (A.9) the AFMM can be used for a

singularity that has a velocity field given by equation (4.3). Greengard and Rokhlin

(1987) provide the corresponding expressions for a singularity that behaves as

qi ln(z− zi). Combining their results with the ones derived above, it is possible to

use the AFMM for the velocity due to a panel that has a linear geometry.

It can be seen from (4.1) and (4.2) that the velocity field due to the panels

can be represented as the sum of a set of singularities that are of the form z ln z

and ln z that are located at the end points, z1 and z2, of the panels. There are

two singularities having strength (γ′2 − γ′1)/λ
′ and (γ′1 − γ′2)/λ

′ of the form z ln z,

and two more singularities of the form ln z with strengths γ′2 and −γ′1 placed,

respectively, at the ends of the panel, z2 and z1. Note that the coefficients due

to the ln z singularity is added to that of dk. Hence, for a single panel, it can be
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shown that

a0 = 0, (4.9a)

ak =
−(γ′2 − γ′1)

kλ′
(
(z2 − z0)

k − (z1 − z0)
k
)
, (4.9b)

d0 = 0, (4.9c)

dk =
1

k

[
(γ′1 − γ′2)

λ′
(
(z2 − z0)

k+1 − (z1 − z0)
k+1

)
(4.9d)

+ γ′2(z2 − z0)
k − γ′1(z1 − z0)

k

]
,

ak+1 − dk =
1

k

[
(γ′2 − γ′1)
λ′(k + 1)

(
(z2 − z0)

k+1 − (z1 − z0)
k+1

)
(4.9e)

− γ′2(z2 − z0)
k + γ′1(z1 − z0)

k

]
,

where k > 0. Since a0 and d0 are zero for a single panel, (4.4), (4.5), and (4.8)

simplify greatly. It is now possible to use the AFMM for any number of panels by

adding to the above coefficients, (4.9), the effect of each panel and substituting

the result in (4.4), (4.5), (4.8), and (A.9). The series expansions need to be

truncated up to some order p depending on the accuracy desired. In Carrier et al.

(1988), given an accuracy ε, the number of terms to be considered in the multipole

expansion is given as p = ln2 ε. Since there is a multiplicative factor of z in the case

of a panel, for the same accuracy to be obtained, p must be chosen as p = 1+ln2 ε.

4.2.2 AFMM with passive particles

In section A.2.1 the traditional algorithm for organizing the particles into a quad-

tree structure was discussed. This method only handles the case where the parti-

cles influence each other. Usually, in a vortex method, the effect of vortex blobs

on vortex panels, or on other particles in the fluid is required. In the present case,

the effect of vortex panels on vortex blobs or other particles in the fluid is required.

This needs to be handled efficiently in the context of the AFMM. It is possible to

generalize the tree generation algorithm in order to handle this efficiently. This

generalization also has other applications. In (Ramachandran et al., 2001, Under

review) this approach of generalizing the tree algorithm is used to handle ran-
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dom walks in the presence of arbitrary two-dimensional geometries. This section

discusses a generalized tree structure to group particles.

The basic idea is simple. The particles involved in the computation are viewed

as causes or effects. As causes, they influence the effects. The effects are merely

influenced by the causes. Treating the particles in this manner results in a very

general algorithm for the domain decomposition that can be used efficiently in a

wide variety of schemes. Consider the following example where the AFMM is used

to compute velocities due to vortex blobs. The computational domain contains

blobs and passive particles. The passive particles by definition are effects as they

do not induce a velocity on anything. The blobs influence all particles (blobs and

passive particles). Therefore, the blobs are causes and both the blobs and passive

particles are effects. This example brings out the fact that the interacting elements

have two types of manifestations, causes and effects.

Using the above, a domain decomposition algorithm for the particular case of

the AFMM as applied to blobs and tracer particles can be expressed as follows.

A. If there are a large number of causes and effects in a cell, then it would
be inefficient to perform a direct computation between the cause and effect
elements in the cell. Therefore, the cell needs to be split into child/daughter
cells.

B. If there are a very small number of causes and effects in the cell, then it
is faster to perform the direct computation between the cause and effect
elements in the cell rather than further subdividing the cell. Therefore, the
cell should be left alone and stored as a leaf/childless cell.

C. If there are a large number of cause elements but small number of effects in
the cell b, then the decision to split depends on the nature of its colleagues.
This is because if there are a larger number of effects in any of the colleagues,
c, then it would be expensive to compute the interactions between the causes
in cell b and the effects in c. Hence, if any of the colleagues c, of cell b have
a large number of effects, then cell b is split into child cells. This will reduce
the number of computations that have to be performed between the causes
of cell b and the effects in c. If there are no such colleague cells then the cell
b can be stored as a leaf/childless cell.

D. Similarly, if there are a large number of effect elements but small number of
causes in the cell b, then it should be split if any of its colleagues c, have a
large number of causes. If there are no such colleague cells then the cell b
can be stored as a leaf/childless cell.
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The notion of what is a “large” number of causes or effects can be deter-

mined from numerical experiments. The present work uses two parameters called

max_cause and max_effect to specify the allowed number of causes or effects per

cell. Depending on the nature of the interactions between the causes and effects

and their distribution, these parameters take different optimal values.

As opposed to the traditional domain decomposition employed in the AFMM,

where only causes (blobs, charges, etc.) are considered, the above domain de-

composition (A through D) can handle situations where the the velocity on blobs

and passive particles are computed. Strickland and Baty (1998) also propose an

alternative scheme to handle independent “source” (cause) and “target” (effect)

fields. Their scheme creates separate cells for the sources and targets whereas the

present scheme creates a single set of cells with each cell containing both causes

and effects.

In the case of the AFMM applied to vortex panels, it is clear that the panels

are the causes and other particles are effects. Hence, by using the above algorithm,

it is possible to efficiently handle the effect of the panels on other particles.

Using the above approach it can be shown that the evaluation of the velocities

of N cause particles on M effects is an O(N + M) operation. Table 4.1 shows

the time taken to compute the velocity due to N vortex blobs of known strengths

placed on the surface of an ellipse (with a 3 : 1 axis ratio) on M randomly dis-

tributed particles inside a square of side 10 units. The effect of the blobs on

themselves are not computed. As can be seen, despite the fact that both N and

M double, only an approximately two-fold increase is seen in the computational

time indicating that the computation is O(N + M).

This is an important result since the naive approach of computing the velocity

of the N causes on the M effects results in an O(NM) computation. For this rea-

son, Bakhoum and Board (1996) find that the AFMM is not suitable for problems

where N is small and M very large. However, the present approach of extending

the AFMM using cause and effects clearly eliminates this problem by making the

computation O(N + M).
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Table 4.1: CPU time for velocity of N cause particles on M effects.

N (cause) M (effect) CPU time (secs)
100 100 0.00502
200 200 0.01326
400 400 0.02683
800 800 0.06241

1600 1600 0.10450
3200 3200 0.24375
6400 6400 0.40861

12800 12800 0.95652
25600 25600 1.67095

4.2.3 Numerical results

Table 4.2: Comparison of CPU times for cubic, flat, and fast panel methods.

Time taken (seconds) Cubic panel Flat panel Fast panel method
Case 1 43.88 11.18 0.42
Case 2 (wake region) 43.53 10.95 0.12

The case of flow past a circular cylinder, centered at the origin with a radius of

1 unit, with 400 panels is considered. A set of 10000 uniformly spaced particles in

a square region is considered. The coordinates of two diagonally opposite corners

of the region are (−2.0,−2.0) and (2.0, 2.0). This is called Case 1. The velocity

at each of these 10000 points is computed using the cubic panel method, the

linear panel method, and finally using the developed fast summation technique.

In the above computation the accuracy for the FMM is chosen as ε = 10−6.

max_cause and max_effect are chosen as 7 panels and particles, respectively.

The corresponding hierarchical mesh is shown in Figure 4.1. As is evident from

Table 4.2, the fast panel method is highly efficient. There is a 100 fold increase as

compared to the cubic method and a 26 fold increase as compared to the traditional

flat panel method. It is significant to note that if the domain of interest (the region

where the particles are distributed) is further away from the body, a much greater

increase is seen. To demonstrate this, a square region having left bottom corner

(1.0,−1.0) and top right corner (3.0, 1.0) with 10000 uniformly spaced points (case

2), is considered. This region is in the wake of the cylinder. For case 2 the results
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Figure 4.1: Hierarchical mesh for the flow past a circular cylinder with 400 panels
and 10000 passive particles for case 1.

Figure 4.2: Hierarchical mesh for the flow past a circular cylinder with 400 panels
and 10000 passive particles for case 2.
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Figure 4.3: Comparison of the error E versus distance from the surface of a circular
body obtained by using the fast panel method, the flat panel method,
and the cubic panel method.

are again shown in Table 4.2. The corresponding mesh is shown in Figure 4.2.

It is clear from Figure 4.2 that the refinement of the mesh becomes finer as the

particles get closer to the body and coarser as the particles move away from the

body. From the results it can be observed that as one moves away from the body,

the computation becomes more efficient (in this case by a factor of 3.5). There

is certain to be an upper limit of efficiency gained for a given computation but

as is evident from the above results, more than two orders of magnitude in speed

increase are achievable.

The fast panel technique has very significant advantages from the perspective

of computational efficiency. In the following, the accuracy of the method is com-

pared to that of the cubic panel technique. The flow past a cylinder is used as a

benchmark. Equation (3.13) is used to compute the error on a ring of particles

away from the cylinder. The ring is made up of around 1000 particles. 200 panels

are used for the cylinder. Figure 4.3 plots the variation of the error, E, versus

the distance of the ring from the surface the cylinder, r. The computation was

performed using a maximum of 7 panels and particles per cell. The fast panel

method is more accurate than the flat panel technique because (a) the cubic panel
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method is used to compute the strengths on the panel and (b) in the vicinity of

the panels the cubic panel method is used to find the velocity.

As can be clearly seen from the above results, the hybrid cubic/flat panel

method is efficient and eliminates the edge effect. It is to be noted that the

method developed allows one to rapidly compute the velocity field due to a known

distribution of singularity on the panels. The approach can therefore be used

to solve for the unknown strengths of the panels iteratively as done by Rokhlin

(1985). The idea is to compute increasingly accurate approximations of the panel

strengths by rapidly computing the velocity field due to the panels at the control

points. This approach is typically useful when there are a large number of panels

and when the geometry of the body is changing. However, this is not implemented

in the present work as described in the end of section 3.6.3.

4.3 AFMM for higher order panels

The hybrid cubic/flat fast panel method discussed in the previous section is not

as accurate as the cubic panel method. This is seen in figure 4.3. It is there-

fore important to extend the AFMM to work with cubic geometry panels instead

of linear panels. In (Ramachandran et al., In press) a technique to perform a

fast multipole summation using panels of any order is developed. This allows for

a highly accurate and fast algorithm for two-dimensional panel methods. The

method developed there is reviewed in this section. The algorithm is demon-

strated using cubic panels. The method developed is compared with the hybrid

algorithm (Ramachandran et al., 2003) developed in section 4.2 and also compared

with Anderson’s technique (Anderson, 1992) extended to the current problem.

4.3.1 Multipole and local expansions

Consider a higher order panel as shown in Figure 4.4. Figure 3.4 plots the same in

the z′ plane with its chord oriented along the x′-axis. Given a vorticity distribution

γ(ζ) the complex velocity at a point z′ (in the z′ plane) due to the panel is given
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Figure 4.4: Higher order panel having a chord length λ in the z plane.

as,

V (z′) = u′ − iv′ =
−i

2π

∫ λ

0

γ(ζ)

z′ − (ζ + iη)
dζ. (4.10)

Substituting ξ = ζ + iη, and performing a binomial expansion results in,

u′ − iv′ =
−i

2π

∫ λ

0

γ(ζ)

z′ − ξ
dζ

=
−i

2π

∫ λ

0

γ(ζ)

z′

[
1 +

ξ

z′
+

ξ2

z′2
+ . . .

]
dζ

=
−i

2π

∞∑
j=1

∫ λ

0

γ(ζ)ξj−1

z′j
dζ (4.11)

Without loss of generality, if z1 of the panel is assumed to be at the origin,

then z′ = ze−iθ and u− iv = e−iθ(u′ − iv′), and the above equation reduces to,

u− iv =
−i

2π

∞∑
j=1

ei(j−1)θ

zj

∫ λ

0

γ(ζ)ξ(ζ)j−1dζ. (4.12)

This can be written as,

u− iv =
−i

2π

∞∑
j=1

Aj

zj
, (4.13)
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where,

Aj = ei(j−1)θ

∫ λ

0

γ(ζ)ξ(ζ)j−1dζ. (4.14)

The complex potential of the higher order panel can also be obtained as follows,

Φ = φ + iψ =
−i

2π

∫ λ

0

γ ln(z′ − ξ)dζ

=
−i

2π

(
ln(z′)

∫ λ

0

γdζ −
∞∑

k=1

1

z′k

∫ λ

0

ξk

k
dζ

)

=
−i

2π

[
P0 ln(z′)−

∞∑

k=1

Pk

z′k

]
(4.15)

where,

P0 =

∫ λ

0

γdζ ; Pk =
1

k

∫ λ

0

ξk γ dζ. (4.16)

In the present work one is interested in evaluating the velocity field due to the

panels. Hence, the multipole method is developed with that in mind. The analysis

of the truncation errors is performed only for the velocity field. The truncation

error for the complex potential can also be easily computed in a similar fashion

as done for the velocity field.

Given ξ(ζ), γ(ζ) and θ, Aj can be readily computed. The series (4.13) converges

if |ξ| < |z|. It is reasonable to assume that the panel is completely contained inside

a circle centered at the origin having radius λ, i.e. |ξ(ζ)| < λ. Given this, it is

easy to see from (4.14) that the error involved in truncating the series to a finite

number of terms p is,

∣∣∣∣∣V (z) +
i

2π

p∑
j=1

Aj

zj

∣∣∣∣∣ ≤
Γ

2πλ(%− 1)

(
1

%

)p

(4.17)

where,

Γ =

∫ λ

0

|γ(ζ)|dζ

and % = |z|/λ.

Hence, equations (4.13) and (4.14) can be used to obtain a fast multipole

expansion for higher order panels. Note that no assumptions on the nature of
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γ(ζ) or ξ(ζ) are made at this point and the condition |ξ(ζ)| < λ for 0 ≤ ζ ≤ λ is

only used to bound the truncation error. The coefficients Aj are to be computed

by numerical integration. It is to be noted that equation (4.13) is a multipole

expansion about the point z1 (the first point) of the panel as shown in figure 4.4.

For a cubic panel as used in section 3.6.2, ξ = ζ + i(a1ζ +a2ζ
2 +a3ζ

3). It is also to

be noted that if the panels do not deform or change orientation, the coefficients,

Aj, are constant and need be computed only once. If the panels only change in

orientation, the entire integral need not be evaluated and the coefficients need to

be multiplied by a different value of ei(j−1)θ. If the panels deform, the coefficients

must be recomputed. Given equations (4.13) and (4.14), the various expressions

for the fast multipole method can be derived as follows.

Multipole expansion for a collection of panels

Given n panels placed at points zk inside a circle of radius R, the multipole

expansion for the velocity field of the panels is,

V (z) = u− iv =
−i

2π

n∑

k=1

∞∑
j=1

Akj

(z − zk)j

where Akj are the coefficients as given in equation (4.14). The above equation can

be expressed as a multipole expansion about a circle centered at z0 as follows,

V (z) =
−i

2π

n∑

k=1

∞∑
j=1

Akj

((z − z0)− (zk − z0))j

=
−i

2π

n∑

k=1

∞∑
j=1

Akj

(z − z0)j
[1− (zk − z0)/(z − z0)]

−j .

By grouping powers of (z − z0) it can be seen that,

V (z) =
−i

2π

∞∑
j=1

aj

(z − z0)j
(4.18)

where,

aj =
n∑

k=1

j∑
m=1

Akm


 j − 1

m− 1


 (zk − z0)

j−m (4.19)
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Equations (4.18) and (4.19) are equivalents to those of Lemma 2.1 in Carrier

et al. (1988). Equation (4.18) is nothing but the sum of the transfers of the

multipole expansions of the n panels, each starting at zk, to a circle of radius R

centered at z0. Thus, when this expression is truncated to p terms, the error in

the velocity is,

∣∣∣∣∣V (z) +
i

2π

p∑
j=1

aj

(z − z0)j

∣∣∣∣∣ =

∣∣∣∣∣
i

2π

∞∑
j=p+1

aj

(z − z0)j

∣∣∣∣∣ ,

where aj is given in equation (4.19). From equation (4.14) it can be seen that,

|Akm| ≤ Γkλ
m−1
k , Γk =

∫ λk

0

|γk(ζ)|dζ,

where λk is the chord length of the k’th panel. Given this and the fact that all

the zk’s lie inside a circle of radius R, aj can be clearly bounded as,

|aj| ≤
n∑

k=1

j∑
m=1

Γkλ
m−1
k


 j − 1

m− 1


 Rj−m

≤ ∆

j∑
m=1

λm−1


 j − 1

m− 1


 Rj−m

where ∆ =
∑n

k=1 Γk and λ = max(λk). Hence,

|aj| ≤ ∆(R + λ)j−1 (4.20)

Therefore,

∣∣∣∣∣V (z) +
i

2π

p∑
j=1

aj

(z − z0)j

∣∣∣∣∣ ≤
∣∣∣∣∣
i∆

2π

∞∑
j=p+1

(R + λ)j−1

(z − z0)j

∣∣∣∣∣

=
∆

2π(R + λ)(c− 1)

(
1

c

)p

(4.21)

where c = |z − z0|/(R + λ). It is to be noted that in this case, any panel having

a starting point zk, lying inside the circle D, centered at z0 with radius R, is

considered for the multipole expansion. Clearly, the circle of radius R + λ will
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completely contain all the panels that have a starting point inside D. Let the

radius of a cell containing panels be Rcell. If the panel mid-chord position is used

as the determining criterion for a panel to be part of a cell, then clearly the radius

of the circle that completely contains all the panels in that cell is Rcell +λ/2. This

is because only half a panel length will be partly outside the cell. From this it is

easy to see that

R + λ ≤ Rcell + λ/2. (4.22)

h

E

z
Q

q

λ
C

Rcell

z0

R+λ

Figure 4.5: Illustration of radius of convergence for panels.

While the result in equation (4.21) has the same form (O(c−p)) for the error

term as in the fast multipole method of (Greengard and Rokhlin, 1987; Carrier

et al., 1988), the value of c is different. The reason for the difference can be

explained as follows. Consider the cell C centered at z0, shown in Figure 4.5. The

cell contains a panel of length λ, with its mid point at the corner of the cell and at

an angle 45◦ to the horizontal. The size of the cell is h. The radius of the cell Rcell =

h
√

2/2. From equation (4.17) it is clear that the panel’s multipole expansion about

its starting point converges only outside a circle of radius λ centered about its

starting point. Thus, it is easy to see that the multipole expansion for the cell

about its center converges outside a circle of radius Rcell + λ/2. This is the same

result as in equation (4.22).
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While implementing the adaptive fast multipole algorithm, the multipole ex-

pansion of the cell C can be evaluated on cells that are well separated from it. The

cell E in Figure 4.5 contains zq, the closest point to z0. The error in the multipole

expansion at this point is governed by,

c =

∣∣∣∣
zq − z0

R + λ

∣∣∣∣ =
3h

h
√

2 + λ

If h = βλ, then,

c =
3β

β
√

2 + 1
. (4.23)

Generally, c is not greater than 2 as in the case of the original fast multipole method

where c = 3/
√

2. Given a value of c and a desired precision, ε, the number of terms

in the series necessary, p, can be determined from equation (4.21). In order to

employ a smaller number of terms p, β needs to be chosen carefully. It is important

to note that the size of the cells used in the multipole method should be limited

by βλ. This result also applies to the fast multipole method of Ramachandran

et al. (2003) which is discussed in section 4.2.

Shifting the center of a multipole expansion

Equation (4.18) is the multipole expansion for a collection of panels in a circle of

radius R centered at z0. This expansion, when translated to the origin, produces

a multipole expansion that converges outside a circle centered at the origin with

radius R + λ + |z0|. The resulting multipole expansion is given by

V (z) =
−i

2π

∞∑
j=1

bj

zj
(4.24)

where,

bj =

j∑

k=1

ak


 j − 1

k − 1


 zj−k

0 (4.25)
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and ak is as given in equation (4.19). This expression is equivalent to Lemma 2.2

in (Carrier et al., 1988). From equation (4.20) a bound for bj can be obtained as,

|bj| ≤ ∆

j∑

k=1

(R + λ)k−1


 j − 1

k − 1


 |z0|j−k

= ∆(R + λ + |z0|)j−1 (4.26)

From the above, the error in truncating equation (4.24) to p terms is bounded as,

∣∣∣∣∣V (z) +
i

2π

p∑
j=1

bj

zj

∣∣∣∣∣ =

∣∣∣∣∣
i

2π

∞∑
j=p+1

bj

zj

∣∣∣∣∣

≤ ∆

2π(|z| − (R + λ + |z0|))
(

R + λ + |z0|
|z|

)p

(4.27)

Conversion of multipole expansion to a local expansion

Given a multipole expansion (4.18) about a circle D0 of radius R and centered at

z0 such that |z0| > (c + 1)R with c > 1, the multipole expansion can be described

by a power series in z that converges inside a circle, D2, centered at the origin

having radius R,

V (z) =
∞∑

j=0

cjz
j (4.28)

where,

cj =
−i

2πzj
0

∞∑

k=1

(−1)k ak

zk
0


 j + k − 1

k − 1


 . (4.29)

This is equivalent to Lemma 2.3 in (Carrier et al., 1988). The derivation for the

error term is similar to that derived in (Greengard and Rokhlin, 1987) for the

local expansions. However, the extent of the panels modifies the results slightly.

The error introduced when the series in equation (4.28) is truncated to p terms is

bounded by,

∣∣∣∣∣V (z)−
p∑

j=1

cjz
j

∣∣∣∣∣ ≤
2∆e(p(R + λ) + cR)(c + 1)

πcR(c− 1)(R + λ)

(
1

c

)p+1

, (4.30)
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where p ≥ 2c/(c− 1), and e is the base of the natural logarithm. The derivation

is very similar to that in (Greengard and Rokhlin, 1987) but is a little involved.

The full derivation is available in Ramachandran et al. (In press). The expression

is very similar to equation (A.8). Also note that c is as defined in (Greengard and

Rokhlin, 1987) and used in equation (A.8) and is not a function of λ.

Finally, given any local expansion centered about z0 and the coefficients ak,

the center of the local expansion can be shifted to the origin without loss of any

accuracy using the equation (A.9).

Using equations (4.18), (4.24), (4.28) and (A.9) the fast multipole algorithm

can be applied to higher order panels. As detailed in section 4.3.1, it is to be noted

that the size of the cell is limited by the length of the panels. The parameter c

in equation (4.21) is modified as in equation (4.23). The direct computation of

the velocity is dependent on the actual higher order panel chosen. In the present

work a cubic panel geometry with a linear distribution of vorticity is used. The

velocity field due to this type of panel is obtained using equation (3.10).

Implementation issues

The expression for the multipole coefficients for a panel in equation (4.14) seems

to indicate that they need re-computation when the value of γ(ζ) changes. For a

linear distribution of vorticity, the expression for Aj is given below,

Aj = ei(j−1)θ

(
γ1

∫ λ

0

ξ(ζ)j−1dζ +
γ2 − γ1

λ

∫ λ

0

ζ ξ(ζ)j−1dζ

)
, (4.31)

where γ1 and γ2 are the values of the vorticity at the ends of the panel. Clearly

the integrals are independent of γ1 and γ2 and need not be re-computed unless the

geometry of the panel or its orientation change. In the present work the integrals

in the equation are evaluated using Simpson’s rule.

At the end of section 4.3.1 it was mentioned that in order to obtain accurate

results the cell size needs to be limited based on the panel size. This can be done

efficiently in the following manner. The maximum and minimum panel lengths
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(λmax, λmin) are computed when assigning the panels to the cell at level 0. If

there is a significant length variation in the panels, then the λmax at higher levels

must be recomputed. If not, the same value of λmax can be used at all levels.

In the present implementation, it is assumed that if λmax/λmin > 1.5 then there

is reasonable variation in the panel lengths. When splitting a cell C, into four

daughter cells, the λmax of cell C is set as the λmax of the panels in the children.

When splitting the newly created daughter cells, if the cell size h is such that

h < 2βλmax, then λmax is recomputed for the cell. After re-computation of λmax,

if h > 2βλmax then the cell can be split. If not the split cell will be smaller than

the required length and is not split. The factor 2 arises because the split cell’s

length will be h/2. Using such a scheme, the need to compute the maximum panel

length at each level is eliminated and is computed only when necessary.

4.3.2 Anderson’s FMM without multipoles

In (Ramachandran et al., In press) the authors also use the “FMM without mul-

tipoles” method (Anderson, 1992) to accelerate the cubic panel method. The

method uses Poisson’s integral formula in order to obtain equivalents for the mul-

tipole expansion. Given a collection of point charges or vortices, the method uses

inner and outer ring approximations of the potential computed using Poisson’s in-

tegral formula to represent the cluster of particles as a single computational entity

and accelerate the computations. The advantage of this approach is that there

is no need to obtain expressions for the multipole expansions as done normally

with the FMM. Anderson describes the algorithm and its implementation from

a multi-grid perspective. Ramachandran et al. (In press) implement Anderson’s

algorithm in the context of the AFMM.

Anderson’s method works by approximating the potential or stream function

of a cluster of particles by inner and outer ring approximations using a careful

discretization of the Poisson’s integral. Poisson’s integral formula is used for par-

ticles that have a log(r) potential. For vortex blobs and panels this corresponds

to their stream function. Anderson defines an outer ring approximation for the
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stream function as follows,

ψ(r, θ) ≈ κ log(r) +
1

2π

K∑
i=1

f(si)Fih (4.32)

Fi =
1− (

a
r

)2 − 2
(

a
r

)M+1
cos((M + 1)(θ − si)) + 2

(
a
r

)M+2
cos(M(θ − si))

1− 2
(

a
r

)
cos(θ − si) +

(
a
r

)2 ,

where, r, θ are the co-ordinates of a point where the stream function is approxi-

mated. K = 2M + 1, si is the angle of the integration point on the ring of radius

a, h = 2πa/K, κ =
∑N

i=1(κi/2π), f(si) = Ψ(a, si)− κ log(a) and Ψ is the stream

function induced by N vortex panels (or vortex blobs) of strengths κi. The inner

ring approximation is similar and given as,

ψ(r, θ) ≈ 1

2π

K∑
i=1

f(si)Gih (4.33)

Gi =
1− (

r
a

)2 − 2
(

r
a

)M+1
cos((M + 1)(θ − si)) + 2

(
r
a

)M+2
cos(M(θ − si))

1− 2
(

r
a

)
cos(θ − si) +

(
r
a

)2

where, f(si) is the stream function due to particles outside the inner ring evalu-

ated on the inner ring. For a ball of radius R, containing a collection of particles

(or panels) Anderson suggests using a value of a = 2R for the outer ring approx-

imation. For an inner ring approximation the value of a = R/2 can be chosen.

In the implementation of this technique, the coefficients f(si) are stored at the

integration points on the inner and outer rings.

Given the above, it is possible to use Anderson’s method with the AFMM. The

procedure is simple and is performed as follows.

• The multipole expansions for the childless cells are computed using outer
ring approximations of the stream function.

• The multipole expansions from daughter cells, D, are are shifted to their
parents, P , by evaluating the outer ring approximation of D on P ’s outer
integration points and accumulating the outer ring coefficients of P .

• Given a multipole expansion (or an outer ring approximation) of a cell C, a
local expansion (inner ring approximation) at a well separated cell S, can be
obtained by computing the outer ring approximation of the stream function
due to C on S’s inner ring integration points and adding them to the inner
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ring coefficients of S. This corresponds to obtaining the interactions due to
cells in the Vb list as described in (Carrier et al., 1988).

• A local expansion is translated from a cell P , to a child cell C, by evaluating
the inner ring approximation of P at the inner integration points of C and
adding the result to the inner ring approximation coefficients of C.

• The interactions due to a cell W , in the Wb list of a cell B are computed
by evaluating the stream function due to the outer ring of W on particles
inside B.

• The Xb interactions on cell B due to a cell X belonging to the Xb list is
found by evaluating the stream function due to each panel in X on the inner
ring integration points of B.

The algorithm does not require the use of explicit expressions for the multipole

expansions and the local expansions as done for the AFMM in sections 4.2 and

4.3. This makes the method easy to extend to situations where expressions for

the multipole expansion are not easy to derive.

Before implementing Anderson’s method a few issues must be noted. The

expression for Fi and Gi in equations (4.32) and (4.33) are indeterminate when

the evaluation point is at any of the integration points, i.e. when r = a and θ = si.

However, the functions are very well behaved and it can be shown that

lim
r→a; θ→si

Fi = lim
r→a; θ→si

Gi = 2M + 1. (4.34)

It is to be noted that the limiting value is the same independent of the order in

which the limits are taken.

If one is interested in the evaluation of the velocity field and not the stream

function then some care must be taken. In order to obtain the velocity field one

can differentiate equations (4.32) and (4.33). From the expressions for Gi, Fi

and the equation (4.34) it can be shown that the derivatives of Fi and Gi will

be singular near the integration points. If the inner ring lies inside a cell, the

points at which the velocities are evaluated may be near the integration points

(i.e. r → a and θ → si). Hence, inaccurate results will be obtained for such points.

This problem is demonstrated in Ramachandran et al. (In press). In order to avoid

such problems, the ring radii must be chosen carefully. This must be done without
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loss of accuracy. The inner ring radius must be chosen such that it is outside the

cell where the velocity is to be evaluated. Similarly, the outer ring radius must be

chosen such that it does not intersect any well separated cell. It is easy to see that

the inner ring radius should be such that a > R (R is the the cell radius) and for

the outer ring it must be such that a < 3R. In Ramachandran et al. (In press) it is

shown that given a cell of length h and radius R = h
√

2/2, choosing a = 0.75h for

the inner ring radius works well without any significant loss of accuracy. Similarly,

for the outer ring radius a value of a = 1.4h is chosen. This ensures that the outer

ring does not lie inside any well separated cells. In this manner it is possible to

obtain accurate velocity fields using Anderson’s technique.

4.3.3 Influence of cell size on accuracy

Consider a panel placed at the edge of a cell as shown in Figure 4.6. The cell C

contains a single panel at one corner such that the mid-chord of the panel is just

inside it. The cells, L1, L2 and L3 are well separated from C. The multipole

expansion due to C is evaluated on these cells. The multipole expansion of C

is also transferred to these cells as a local expansion and this local expansion is

evaluated inside these cells. The contours of the relative error in the velocity due

to the panel in these cells is plotted using the cubic fast panel method (section 4.3),

hybrid cubic/flat method (section 4.2) and Anderson’s scheme (section 4.3.2). As

would be expected, it is found that the point zm as shown in the figure has the

maximum error. The cells X1 and X2 are cells which are in the Wb list of C.

Hence, C is in the Xb list of X1 and X2. The Xb interactions on these two are

evaluated from cell C. For this case the maximum error occurs at the point shown

as zx in figure 4.6. Again this is to be expected because this point is closest to the

circle centered at C and containing the panel completely.

The relative error, Erel, at a point is defined as,

Erel =

∣∣∣∣
vexact − vcomputed

vexact

∣∣∣∣ (4.35)

Note that vexact is never zero at the points being considered. For a panel of
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Figure 4.6: Illustration of a panel in a cell and the location of maximum error.
The cell C contains a panel at the corner. The cells X1 and X2 are
cells where the Xb special local expansion is performed, L1, L2, L3 are
cells where local expansions and multipole expansions due to C are
computed.

fixed chord length, λ, different cells, C, with length given as h = βλ, β > 1 are

considered. For each of these cases the maximum relative error inside the cells

X1 and L1, which are at the points zx and zm respectively, are computed. The

number of terms, p, necessary to obtain an accuracy of around 10−6 are considered

for the computation. At zm both the multipole expansion due to C and the local

expansion due to L1 are computed. At zx the Xb interaction due to C is computed.

Figure 4.7 plots these errors as β is varied when using the multipole expansions

for the higher order panels developed in section 4.3. At the chosen scale, the

local expansion error curve is indistinguishable from the multipole expansion error

curve. This occurs because the order of the local expansion error is independent

of β as seen in equation (4.30). Therefore, the local expansion is as inaccurate

as the multipole expansion that was used to compute its coefficients. From the

discussion in section 4.3.1 it is expected that the expansions become increasingly

accurate as β increases. As is expected, good accuracy is obtained only when

β > 5. The results are similar for the hybrid cubic/flat panel method (section 4.2)

and also for Anderson’s method applied to panels (section 4.3.2). The results for
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Figure 4.7: Maximum relative error due to the multipole expansion, local expan-
sion and Xb interaction versus change in β for the AFMM for higher
order panels. Note that the curves for the multipole expansion and
the local expansion coincide.

these cases are presented in Ramachandran et al. (In press). This illustrates the

importance of limiting the cell size based on panel length.

4.3.4 Numerical results

Comparison of accuracy

In order to demonstrate the accuracy of the AFMM adapted to higher order

panels, the flow past a circular cylinder is used for comparison. This problem is

chosen because it has an exact solution, the geometry is simple and has bounded

values of vorticity. The flow past a circular cylinder of radius 1 unit with 400 cubic

panels is considered. The panel strengths are obtained using an LU decomposition.

A circular ring of 10000 particles around the cylinder is considered at various

distances from the surface of the cylinder. The velocity due to the panels is
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Figure 4.8: Plot of the maximum relative error due to various methods versus
distance from the surface of the cylinder. 400 panels are used for the
cylinder. The curves for the fast cubic method and Anderson’s scheme
coincide with the curve for the direct computation.

computed using the direct method (for cubic panels), the hybrid cubic/flat fast

multipole panel approach developed in section 4.2, the higher order cubic panel

method (section 4.3) and Anderson’s scheme (section 4.3.2). The relative error at

each evaluation point is computed using equation (4.35). The maximum of these

is plotted as the ring radius is varied in Figure 4.8. It is to be noted that when the

exact velocity is very small, the point is not considered for the error computation.

For the scale used in the graph, the results for the direct method, the AFMM for

higher order panels and Anderson’s scheme all coincide. This indicates that the

higher order panel method and Anderson’s scheme produce very accurate results.

Comparison of computational efficiency

A few general observations are made first. If the causes and effects in the quad-

tree mesh are well separated then the interactions between these causes and effects
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can be evaluated without direct computations. It is easy to see that this is the

most efficient case. For example, consider the flow past a circular cylinder. Let

the velocity or potential due to this cylinder be computed at a cluster of particles.

If the cluster is at least two diameters away from the center of the cylinder, then

there are no direct computations to perform between these particles and the panels

that represent the cylinder. Clearly such a computation would be highly efficient.

On the other hand if the cluster is such that there are a large number of particles

that are distributed along the surface of the cylinder, then there are a large number

of direct computations to be performed. Given that the size of a cell is restricted

by the length of the panels (section 4.3.3), it is easy to imagine situations where a

small number of panels are used along with a large number of particles distributed

near them. In such cases, due to the size of the cell, there will be a very large

number of effect particles per cell. This will make the multipole computations

inefficient. In order to overcome this one should reduce the size of the panels such

that the ratio of the number of effects divided by the number of causes in a cell are

kept as small as possible. So, on the one hand the number of panels must increase

and on the other hand the main reason why higher order panels are chosen is

to use a small number of panels. By using a small number of panels the matrix

used to solve for the singularity distribution is small and hence easier and faster

to solve. Given such a conflicting requirement it is still possible to use a smaller

matrix by using two different representations for the body. One representation

with larger panels could be used to solve for the singularity strengths and another

representation with smaller panels, having interpolated strengths obtained from

the larger panels, can be used for the AFMM. Using such an approach, it should

be possible solve for the panel singularities efficiently and also perform the AFMM

efficiently.

In order to demonstrate the efficiency of the AFMM for higher order panels,

the flow past a circular cylinder of unit radius, centered at the origin is considered.

The cylinder is discretized into 400 cubic panels. A uniform grid of particles in

the square region zmin = −2.0− 2.0i, zmax = 2.0 + 2.0i is considered. The number

of particles used is varied. The time taken by the direct method, the hybrid

flat/cubic method, the higher order panel method and Anderson’s method are
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Figure 4.9: Time taken versus number of particles in a square region. 400 panels
are used for the cylinder. β = 7.0. Note that the curves for the fast
cubic method (higher order panels) and the hybrid cubic/flat method
almost coincide.

plotted in Figure 4.9. The maximum number of cause and effects are chosen as

13 and 13 respectively for Anderson’s scheme and 7 and 7 for all the others. β

is chosen as 7.0. As can be seen, all the fast multipole methods are significantly

(factor of 50) faster than the direct method. It is also seen that the fast cubic

method is slightly faster than Anderson’s scheme.

It is to be noted that the above computations are not optimized to suit the

particle and panel distribution because the number of panels and the grid size is

fixed whereas the number of particles is increasing. This results in a very large

number of effects per cell. Despite this, the fast multipole schemes are much faster

than the direct method.

An estimate for the number of effects per cell can be obtained in the following

manner. Given the radius of the circle r, β, and the number of panels, Npanel,

the length of the smallest cell is clearly limited by h = 2πrβ/Npanel. If a uniform
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Figure 4.10: Time taken as ne is varied. ne is reduced by increasing A. 400 panels
are used for the cylinder. β = 7.0.

grid of Np particles enclosed in an area A is used, then the estimated number of

particles in the smallest cell, ne, is

ne =
Np

A
h2 =

4Npπ
2r2β2

AN2
panel

(4.36)

In order to demonstrate how significantly the number of effects per cell affects the

computational time, the time taken for the presently developed algorithm for a

fixed number of particles is computed as ne is changed. For a given Np, β and a

given body, ne can be varied by changing either A (the area of the uniform grid

of particles) or by changing Npanel.

Figure 4.10 plots the variation of the time taken as the area of the uniform

grid is gradually increased. The number of tracer particles in the grid is 40000.

The stair stepping occurs in the plot because the cell size is limited by βλ and

the way in which the cells are split. If the total length of the side of a cell at

level 0 is L, then the length of the side of the cell at level l is, L/2l. In the range
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Figure 4.11: Time taken as the number of panels is increased. 40000 points in a
uniform grid are considered inside a square region. β = 7.0.

9 < ne < 11, the length L of the level 0 cell and the panel length are such that

it is possible to refine the grid by one more level. This is the reason for the stair

stepping in the plot. However, the point being made here is that as the number

of effects per smallest cell reduces, the time taken reduces significantly, anywhere

between a factor of 4 to 8. It is also seen that for most part, the fast cubic panel

method is about 1.5 to 2 times faster than Anderson’s scheme.

Figure 4.11 plots the variation of the time taken as the number of panels is

increased. 40000 tracer particles are considered inside the square region (zmin =

−2.0 − 2.0i, zmax = 2.0 + 2.0i) for all the computations. As can be seen from

equation (4.36), ne drops as the number of panels increases. The time taken drops

first and then increases as the number of panels is increased because initially the

ratio of the length of the cell and the panel size is such that the first increase

in the number of panels triggers a split in the cell. Subsequently, reducing the

panel length does not trigger a split until a threshold is crossed. During this

the computational time increases. As can be seen in the figure, even though the
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number of panels has increased by a factor of 16 the time taken to perform the

computation has reduced by a factor of 4. This illustrates the importance of

choosing the right number of panels.

The time taken to re-compute the multipole coefficients (equation (4.14) and

(4.31)) for each panel is small compared to the other computations. In the Fig-

ure 4.11 the fraction of time taken to recompute the multipole is around 8% of the

total time when the number of panels are 1600. With 400 panels the time taken

to re-compute the multipoles is around 1.5% of the total time. This indicates

that the higher order panel method is efficient even if the panel geometry changes

significantly in time.

It is to be noted that Anderson’s scheme has been implemented with some

care. The only difference between the newly developed algorithm and the imple-

mentation of Anderson’s method is in the functions governing the computation of

the multipoles at the finest level, transfer of multipole expansion and evaluation

and transfer of the local expansion. The expressions given in Anderson’s work are

used in these functions. The velocity field is computed by analytically differenti-

ating these expressions. All quantities that are constant (like log(a), where a is

the radius of the ring and the various sines and cosines) are pre-computed and

stored in order to avoid unnecessary re-computation. It is also to be noted that

the evaluation of the stream function did not amount to more than 5% of the total

computational time taken to evaluate the velocity on a 101x101 grid of points. It

is possible that the implementation of Anderson’s method can be further opti-

mized. However, it must be noted that the expressions in equations (4.32) and

(4.33) require the evaluation of the arctangent (to compute the angle θ) and the

various cosines. By precomputing eiMsi and eisi , it is possible to obtain the other

cosine terms using arithmetic operations and the value of eiθ and eiMθ. However,

the multipole expansions derived in the present work require purely arithmetic

operations. Therefore, it appears that there is a small price to pay for the gener-

ality that Anderson’s scheme provides and the ease of its deployment and use in

different situations. The gain in using the expressions in section 4.3.1 over Ander-

son’s scheme depends on the choice of parameters and the problem chosen. The
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present implementation suggests that a factor of two improvement is possible.

4.4 Summary

The following were discussed in considerable detail in this chapter.

• An adaptation of the AFMM suitable for vortex panels with a linear geom-
etry (Ramachandran et al., 2003) and linear vorticity distribution.

• An elegant generalization of the AFMM to handle passive particles.

• An adaptation of the AFMM to handle higher order vortex panels. This
was specifically demonstrated for cubic panels with a linear vorticity distri-
bution (Ramachandran et al., In press).

• The use of Anderson’s “FMM without multipoles” method to obtain the
velocity field due to higher order vortex panels. The modifications necessary
to use it in the context of the AFMM were discussed.

• The importance of limiting the cell size based on the length of the panels
inside it was demonstrated.

• The accuracy and efficiency of the methods developed were demonstrated.

The developed techniques are centrally important to vortex method based

solvers because they enable one to use a large number of interacting particles.

The next chapter investigates other important fast algorithms used in this work.
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CHAPTER 5

OTHER FAST ALGORITHMS

In the previous chapter, the adaptive fast multipole method (AFMM) was applied

to accelerate the computation of the velocity field due to the vortex panels. The

AFMM is central to a vortex method because it enables the rapid evaluation of

the velocity field. However, there are aspects of a vortex method that require the

use of other fast algorithms. The following fast algorithms that are of relevance

to the present work are discussed in this chapter.

• An algorithm to move vortex particles in the vicinity of complex geometries.

• An algorithm to compute the velocity induced by the sheets on each other
and on the boundaries.

• An algorithm for the inter-conversion of sheets and blobs.

• An algorithm to merge and annihilate vortex particles in the context of the
random vortex method.

Of these, the algorithm to move particles in the vicinity of complex geometries

is the most challenging. The other algorithms can be developed easily using the

techniques developed for it. Hence, the algorithm for moving particles efficiently

in the presence of complex geometries is first discussed.

5.1 Particle motion and complex geometry

A moving particle should not penetrate a solid body. Therefore, care is to be

taken during numerical simulation to ensure that no particle penetrates a solid

wall. This needs to be done efficiently. The problem is further compounded when

the geometry is complex.

In the RVM, particle motion occurs in two different ways. The first is due to the

convection of the particles. The second is due to the random displacements given



to the particles during diffusion. If the time step is small, the displacements due

to convection will be small. The no-penetration condition enforced on the velocity

field will in general prevent the particles from entering the surface. However, if

the time steps are large, the situation can be different. On the other hand, the

displacement of the particles during diffusion is random. It is therefore not easy

to ensure that the particles do not penetrate solid bodies. Detecting collisions of

particles with solid walls for simple geometries is trivial and usually not an issue.

However, it is not easy to handle complex geometries efficiently.

Given the possibility that a vortex particle path intersects a solid wall, the case

can be handled using the following two approaches. In one approach the particle is

reflected specularly. In the other, the particle is removed from the computation as

done by Clarke and Tutty (1994); Smith and Stansby (1989) and others. Ghoniem

et al. (1982) use a hybrid approach and either reflect or absorb particles depending

on their initial position with respect to the wall. In the present work the particles

are reflected specularly for both convective and diffusive displacements.

In the following, an efficient methodology is developed to move particles in

the presence of arbitrary two-dimensional shapes. Certain ideas from the fast

multipole algorithms are used in order to make the computations more efficient.

This is based on the work of Ramachandran et al. (2000b, 2001, Under review).

In the context of collision detection of particles, Lubachevsky (1991) presents

an event driven algorithm to efficiently handle the interactions of hard spheres.

This algorithm divides the domain of the particles into sectors to speed up the

computations. The algorithm is applicable to a more general problem domain.

However, the algorithm developed in the present work is simpler and designed to

be used in the context of vortex methods. The simplicity arises from the fact that

unlike the hard sphere problem, there are no sphere-sphere collisions to consider.

It is to be noted that the algorithm developed here is also of use in the context

of deterministic diffusion schemes in the presence of complex geometry. While

deterministic diffusion schemes do not involve a random displacement of the par-

ticle, they do require the computation of a list of nearby particles with which the
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particle will interact. That is, particles that are separated by a solid wall cannot

diffuse vorticity to each other. It is clear that the ideas developed in the present

case can be used for this.

The basic idea used in the algorithm is to discretize the geometry into linear

segments. The domain containing the particles and solid boundaries is then de-

composed into a quad-tree of cells, much like the computational cells of the AFMM

discussed in section A.2.1. The particles are then tracked along the cells as they

move. If the particle strikes a body, it is reflected appropriately. Sheet-blob con-

version issues are also considered. The algorithm is designed so that it is possible

to extend an existing AFMM implementation. A simple measure of the geometric

complexity of a shape is also provided. The algorithm developed is shown to scale

efficiently as this complexity increases.

In order to perform intersection checks of particle paths with the solid walls

efficiently, it is imperative that the domain decomposition be done carefully. This

is detailed in the following.

5.1.1 Domain decomposition and cell generation

Viscous Boxes
Numerical layer

Solid Wall

Figure 5.1: Discretization of the numerical layer into viscous boxes.

The geometry is first discretized into segments or panels. Each panel has

extent and has a numerical layer associated with it. As seen earlier, vorticity in

this numerical layer around the body is represented in the form of vortex sheets.

Blobs that enter this region are converted to sheets and sheets leaving the region

are converted to blobs. In order to handle this correctly, the numerical layer

is discretized into viscous boxes. As illustrated in Fig. 5.1, each viscous box is

essentially a trapezium with one side along the solid surface and the other at the
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Figure 5.2: A viscous box passing through various cells.

edge of the numerical layer. Once the body geometry is specified, the geometry of

the viscous boxes are known. The domain of particles is organized into a quad-tree

as discussed in section A.2.1 and 4.2.2. The viscous boxes are treated as causes

and all moving particles as effects. The domain is first decomposed in terms of

the panel centers or some representative point, called the control point, inside the

viscous box. Thus, each viscous box is initially identified with one childless cell.

Due to the extent of the viscous box, parts of it will also be in other cells. In

Fig. 5.2 the viscous box is initially assigned to cell 1 alone. All its neighboring

cells also contain parts of the viscous box and this information is to be updated

in those cells. A cell is said to contain a viscous box if a side of the box passes

through it. All the childless cells are modified based on this.

The following procedure is applied to modify the childless cells that are created

by the tree generation algorithm. A viscous box is considered. The control point of

the viscous box is within some cell created by the domain decomposition. Starting

at the control point, a path is traced to an edge of the box. The path continues

along lines constituting the trapezium. In this process, the different childless cells

that are traversed are modified to reflect the existence of a part of this viscous box

in them. Care is to be taken to avoid repetitions when the cell already contains

the particular box. The procedure is illustrated in Fig. 5.2, where the viscous

box passes through the cells numbered 1 through 6. After performing the domain
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decomposition only cell 1 will contain the particular viscous box. After performing

the above procedure, cells 2, 3, 4, 5 and 6 are also made to contain part of the

viscous box. The process is repeated for all the viscous boxes. This algorithm

will fail if a cell is completely enclosed by the viscous box because in that case no

side of the trapezium will pass through the cell. This can be easily prevented by

enforcing the condition that every cell has a side larger than the smallest side of

all the trapeziums.

The pseudo-code for tracking a side of the viscous box is given in algorithm 5.1.

z1 and z2 are the end points of the line (side of the viscous box) that are being

tracked. The most vital component in this algorithm is the one that tracks the

side of the trapezium through the various cells using the FindNextCell function.

It is evident that this tracking algorithm is also important for the case of the

random walk of particles. The details of the algorithm for tracking a line segment

are elucidated first.

Algorithm 5.1 TrackLine(box, z1, z2, C)

NextCell = FindNextCell (z1, z2, C)
if NextCell 6= C then

if NextCell does not contain box then
Set box in NextCell.

end if
TrackLine(box, z1, z2, NextCell)

end if

The current discussion is restricted to two dimensions and hence the complex

plane is used to describe the algorithm. Let the start and end points of the straight

line being tracked be labelled z1 and z2 respectively, where z is the complex co-

ordinate. Let z12 be the line joining z1 and z2. Assume that the tracking is started

at a childless cell C which contains the point z1.

If the point z2 lies within the current cell C, then the line segment z12 is wholly

in the cell C. If it does not, then it crosses over into one of the colleagues of C,

intersecting the side of the cell at ztmp. This side identifies the colleague C1 as

shown in Fig. 5.3. Then, the childless cell Ctmp that contains ztmp is found. This

will be either C1 or one of C1’s descendents or one of its ancestors. In Fig. 5.3,

Ctmp is one of C1’s descendents. In order to continue tracking from the cell Ctmp,
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Figure 5.3: Schematic of a line passing through various cells. The line joining z1

and z2 originates in the cell C and passes through the descendents of
its colleague C1.

the process is repeated with C = Ctmp and z1 = ztmp. In this fashion, the cells

through which z12 passes can be found. The pseudo-code to find the next cell

(FindNextCell) is given in algorithm 5.2.

Algorithm 5.2 FindNextCell(z1, z2, C)

if Line z12 crosses any side of C then
Find the side, S, of C, that the line z12 crosses.
Find intersection of S and z12 and store as ztmp.
Find the colleague, C1, of C, that shares S.
Find the childless ancestor or descendent Ctmp, of C1, that contains ztmp.
z1 = ztmp

return Ctmp.
else

return C
end if

Using implementations of the above algorithms it is easy to find all the cells

that contain parts of a viscous box. After applying the algorithms to all the

viscous boxes, it is possible to check for intersections of particle paths with the

viscous boxes in each cell. The details of this methodology as applied to the RVM

are discussed next.

5.1.2 Diffusion using the RVM

Diffusion of blobs and sheets in the RVM is accomplished by giving them random

displacements. The sheets are given displacements perpendicular to the local panel

surface and the blobs are given random displacements in each co-ordinate direction
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(x and y in two dimensions). The paths of the diffusing blobs and sheets are to

be checked for intersections with any panel. Clearly, the displacement of the blob

or sheet at a given time step is a straight line. If a blob enters a viscous box it is

to be converted to a sheet and vice versa. A variant of the algorithms 5.1 and 5.2

are used here and described below. The following observations are made before

the algorithm is presented. Every blob is initially associated with a childless cell

of the mesh. It is also to be noted that one side of each viscous box is associated

with a linear panel that represents the solid surface. The other sides of the box

are used to represent the numerical layer.

A blob in a childless cell, C, is considered. Its initial position is z1 and the

final position is z2. The line joining the two points, z12, is tracked through all the

childless cells in a manner similar to the algorithm 5.1. This is also illustrated in

Fig. 5.3. First, it is determined if the point z2 lies within the current cell C. If

it does then the blob is checked for collisions with panels inside the current cell.

If the point z2 is not inside the cell C, then the line segment z12 crosses the cell.

Therefore, the segment of z12 inside the current cell is found using ztmp obtained

from algorithm 5.2. This segment is checked for intersections with all panels in

the current cell. If there is no intersection then the algorithm proceeds from the

next cell. If there is an intersection, the reflected path is computed. The same

algorithm is then applied to the reflected path. The pseudo-code embodying the

above discussion is given in algorithm 5.3.

The final value of z2 is the final position of the particle. The methodology

to check for intersections between the particle path and the panels is discussed

next. For the case illustrated in Fig. 5.4, the panel associated with the viscous

box and the relevant points are transformed to a local co-ordinate system. If the

line joining z1 and z2 is the path of the particle, it is evident that it is not always

necessary to compute the value of xint, the point where the line intersects the x

axis. One can eliminate many intersection checks using the relative signs of y1

and y2. Therefore, in the present implementation, the first check is to see if an

intersection is possible. If it is, then the value of xint is computed and compared

to see if 0 ≤ xint ≤ l where l is the length of the panel. In some cases there
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Algorithm 5.3 CheckPath(z1, z2, C)

if Line z12 crosses any side of C then
Find the side, S, of C, that the line z12 crosses.
Find intersection of S and z12 and store as ztmp.
Last = false

else
ztmp = z2

Last = true
end if
if Line joining z1 and ztmp intersects any panel in C then

Find the panel that is intersected first.
Find reflected ray and store the path in new z1, z2.
CheckPath(z1, z2, C)

else if Last == false then
Find the colleague, C1, of C, that shares S.
Find childless descendent or ancestor Ctmp, of C1, that contains ztmp.
z1 = ztmp

CheckPath(z1, z2, Ctmp)
end if

Z

Z

1

2

Y

XPanel

Y

Y

Xint

2

1

Figure 5.4: Illustration for algorithm used to check intersections of a particle path
with a panel.
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Figure 5.5: Illustration for algorithm used to check intersections of blobs having
a finite core radius, δ, with a panel.

can be more than one panel in the same cell that the line crosses. In such a

case all the intersecting panels are considered and the panel that has the closest

intersection point is chosen for the reflection. The corresponding distance is given

by,
√

(xint − x1)2 + y2
1. The intersection point is given as (xint, 0) and the final

point is reflected such that z2 = (x2,−y2). It is possible to use a different reflection

scheme or even delete the intersected blob, as done by Clarke and Tutty (1994)

and Smith and Stansby (1989).

The same algorithm can be used for the sheets. However it can be simplified

since the displacement of the sheets is only perpendicular to the local surface.

The terminal position of the particle determines whether it is a sheet or a blob.

If sheets are not used at all as in (Clarke and Tutty, 1994; Lin et al., 1997; Taylor

and Vezza, 1999b,a) and others, then the complications due to the conversion are

avoided.

Usually, vortex blobs have a finite core and it may be necessary to ensure that

the blob core does not penetrate a panel. In such a case the intersection check

must be done by using the points closest to the panel and not the center of the

blob. In local co-ordinates this reduces to the bottom of the blob as shown in

the Fig. 5.5. This can be easily incorporated in the present algorithm by doing

the following. In Fig. 5.5, instead of considering the actual heights in the local
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co-ordinate system, the radius of the blob, δ, is subtracted from the heights and

the resulting line is used to perform the check. This merely requires two extra

subtractions. However, a blob with a core does require little more care than this.

Since the blob has extent it is not sufficient to check for intersections inside the

current cell alone. One must also check for intersections in all cells that the blob

will pass through by virtue of its extent. This is not difficult to do but does require

a little effort if efficiency is desired. It also increases the computational time taken

by the algorithm since the number of cells to consider is larger.

One final point to note is that there are cases where the angle between two

adjacent panels is very small and forms a concave region. If a particle having a

finite core-radius performs a random walk into this region, it is possible it becomes

stuck between the two panels as it approaches the intersection of the two panels.

To avoid this case one must store the length of the path between two consecutive

reflections. If the length is reducing and tending to zero the particle could be

placed at the corner without undergoing any further reflections. Alternatively,

the particle may be reflected along the bisector of the angle between the two

panels.

In this fashion, the collisions of the moving particles with the solid boundary

are handled. Using the above ideas, it is clear that vortex diffusion in the presence

of arbitrary boundaries can be carried out when using the RVM.

5.1.3 Numerical results

In order to demonstrate the efficiency of the algorithm developed, a complex body

geometry is considered. Particles are distributed on the surface of the body and

diffused using random walks. The computational time taken by the algorithm

for a fixed number of time steps is plotted as various parameters are varied. In

order to characterize the geometric complexity of the body, a measure for the

geometric complexity is necessary. Using a fractal dimension in this context is not

useful because geometries considered in such computations are not truly fractal

and can at best be finite iterations of a fractal construction. Using a complexity
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measure from information theory (e.g. Kolmogorov complexity) also does not

seem appropriate for the present study. The following properties for the geometric

complexity are desirable:

1. The measure must be purely geometric and must not depend on the number
of panels used to discretize the body.

2. It must be a scalar and insensitive to rotation, translation and scaling.

3. If the number of bodies is multiplied by an integer k, then the measure must
also scale by k.

4. The measure must be easy to compute.

A simple measure for the geometric complexity, C, of a body that satisfies all

of the above can be defined as follows. Let G be the sum of the absolute change

in the angle of inclination of the tangent as the contour of the body is traced.

Consider an equilateral triangle, if one starts at a vertex and traces the contour

of the body, it is clear that at each vertex, the inclination of the tangent changes

by 2π/3 radians. There are three such vertices and therefore for an equilateral

triangle, G = 2π. In similar fashion it can be seen that for simple geometries

like triangles, rectangles, closed convex polygons and circles, G = 2π. Hence, the

geometric complexity is defined in terms of G as C = G/2π

Evidently, this measure is incapable of differentiating between a circle and a

convex polygon. However, for a closed body that has concave depressions and

convex projections, it does show an increase in complexity. Any concave geometry

or projection complicates the intersection algorithm because such regions would

increase the number of intersections that a randomly diffusing particle would make

with the body.

For the present study, in order to construct geometries with varying complex-

ities easily, a fractal construction is chosen. At level 0 of the construction, an

equilateral triangle is considered. Each side of the triangle is split in the manner

of a Koch snowflake (see Peitgen et al. (1992) for details). The first and second

levels of construction are shown in Figure 5.6. One can easily compute the com-

plexity of such a body at any level of construction. Table 5.1 shows the variation
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level 2level 1

Figure 5.6: Geometry chosen for study at level 1 and 2.

Table 5.1: Geometric complexity of the body.

Construction level Number of sides Geometric complexity, C
0 3 1
1 12 3
2 48 11
3 192 43
4 768 171

of complexity as the number of levels of construction of the body shown in Fig. 5.6

increases. As is evident, the complexity of the body increases rapidly.

In order to test the present scheme, point vortices are distributed on the inner

or outer surface of the body. The particles are diffused and the computational time

taken is plotted as different parameters are varied. Since the primary interest is

in testing the random walk algorithm alone, no convection is performed. Fig. 5.7

and 5.8 show the particles and the body used after 50 time steps. In Fig. 5.7 the

particles are placed on the outer surface of the body and diffused. In Fig. 5.8 the

particles are distributed on the inner surface of the body. 49152 particles are used

and the body has 576 equal sized panels. The body chosen is at level 3 and has

a geometric complexity of 43. As is evident, none of the particles cross the body.

The maximum number of cause and effect particles allowed per cell is fixed for all

simulations as 10. The non-dimensional length of a side of the equilateral triangle

that is used to generate the body (i.e. the body at level 0) is 1. For simplicity,

no sheet-blob conversion is performed. In order to stress-test the algorithm the

viscosity, ν, and the time step ∆t are chosen such that large random displacements

are generated. In the present work ν and ∆t are chosen such that the standard

deviation of the random displacement is σ/L =
√

2ν∆t/L = 0.1, where L is the
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Figure 5.7: Simulation of diffusion outside the body at level 3 of its construction.
49152 vortex blobs are used in the simulation. The blobs are initially
distributed on the outer surface of the body. The non-dimensional
width of the body is 1. The figure is a plot at the end of 50 time steps.

Figure 5.8: Simulation of diffusion inside the body at level 3 of its construction.
49152 vortex blobs are used in the simulation. The blobs are initially
distributed on the inner surface of the body. The non-dimensional
width of the body is 1. The figure is a plot at the end of 50 time steps.
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length of the side of body. This is 10% of the size of the body and is quite a large

displacement. The computations in (Koumoutsakos and Leonard, 1995) for the

flow past a cylinder at a Reynolds number of 40 use a ∆t of 0.02. Simulating this

using the RVM would therefore require the generation of random displacements

having a σ/L of about 0.032. The present displacement is about 3 times larger and

therefore seems a reasonable choice to use when testing the diffusion algorithm.

To determine the efficiency of the algorithm, the computational time is plotted

against the complexity of the body in Fig. 5.9. For each body of given complexity,

the number of panels used is 768. The panels are equally sized. 49152 vortex

particles are used. The complexity of the body is varied from 1 to 171. All other

parameters are held fixed. The dashed line is for the internal diffusion case and the

solid line is for the external diffusion case. It is clear that despite the great increase

in complexity, there is only a 15% increase in the computational time. Due to a

larger number of reflections, the internal diffusion case takes more computational

time.

Fig. 5.10 plots the variation of the computational time as the number of panels

is changed for a given number of particles (49152) and complexity (43). Here again,

despite a seven fold increase in number of panels there is only a 25% change in the

time taken. As the number of panels increases, the time taken increases almost

linearly. This indicates that the algorithm is efficient. Fig. 5.11 plots the variation

of the computational time versus number of blobs used in the simulation. As

expected this is linear. 576 equal sized panels are used for the body and the

complexity of the body chosen is 43.

For a simulation of diffusion inside the body at level 3 (complexity 43) with

768 panels and 49152 particles the maximum number of cause and effect particles

is chosen as 1000. This ensures that there is only one cell in the computation

and hence all the particles are checked for intersections with all the panels. It

is seen that this computation takes more than 45 times the time taken when the

maximum number of causes and effects is set to 10. This clearly demonstrates the

efficiency of the new procedure as compared to naive intersection checks without

any adaptive domain decomposition.
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Figure 5.9: Variation of time taken for 50 time steps versus geometric complexity
of the body. 49152 vortex blobs are used in the simulation and 768
equal sized panels are used for the body.
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Figure 5.10: Variation of time taken for 50 time steps versus number of panels
used. 49152 vortex blobs are used in the simulation and the com-
plexity of the body is 43 (i.e. the body is at level 3 of the fractal
construction).
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Figure 5.11: Variation of time taken for 50 time steps versus number of blobs used
in the simulation. 576 equal sized panels are used in the simulation
and the complexity of the body is 43 (i.e. the body is at level 3 of
the fractal construction).

In order to demonstrate the speed of the algorithm in realistic situations the

uniform flow past two different complex body shapes is simulated. There are

two reasons why the simulations are made. The first is to demonstrate that the

algorithm works in a realistic situation with advection and sheet blob conversions

even when complex shapes are considered. The second is to provide an estimate

of the efficiency of the algorithm as compared to the rest of the computations

(like the fast multipole velocity evaluation) involved in the simulation. For the

simulation, the adaptive fast multipole method (Carrier et al., 1988), using the

modified domain decomposition of section 4.2.2 has been implemented to compute

the velocity due to the blobs on each other. A linear vortex panel method is

used to satisfy the no penetration condition on the boundary. The fast multipole

technique (Ramachandran et al., 2003) developed in section 4.2 is also used to

evaluate the velocity field due to the panels. In the first case, the body has a

geometry as shown in Fig. 5.12. 434 equal sized panels are used to discretize

the shape. For the simulation, the relevant parameters are chosen as Re = 1000

and ∆T = 0.0044, where T = Ut/R, U is the free stream velocity and R is the

radius of the cylinder. The numerical layer height is taken as ε/R = 0.011. The

106



Figure 5.12: Vorticity distribution for flow past the body at T = 1.32.

resulting vorticity distribution at the end of 301 time steps is shown in Fig. 5.12.

There are about 25000 particles in the flow at this time. The red colored blobs and

yellow colored sheets represent clockwise vorticity. The blue blobs and cyan sheets

represent anti-clockwise vorticity. The strength of each blob is 7.868× 10−4 units.

As is evident, none of the particles have entered the body, indicating a successful

implementation of the diffusion algorithm. At the end of 301 time steps, (i.e. a

total time of T = 1.32), the computational time taken by the diffusion algorithm

is about 3.44% of the the total time taken by the fast multipole method. This

corresponds to 2.5% of the time taken for the entire simulation.

In Fig. 5.13 the vorticity distribution for the flow past the shape given in

Fig. 5.6 at level 2 and having complexity of 11 is shown. 576 equal sized panels

are used to discretize the body. The flow is at an angle of 45◦ to the horizontal.

The Reynolds number is based on the width of the body. The flow parameters

are chosen such that the Reynolds number is 1000. The figure shows the vorticity

distribution at the end of 1000 time steps using a ∆T = 0.0025. At this time there

are about 45000 particles in the flow. It is evident that none of the particles have

entered the body. For this simulation the time taken for the diffusion algorithm

is about 2.1% of the time taken for the fast multipole algorithm and only 1.6% of
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Figure 5.13: Vorticity distribution for flow past a complex shape at T = 2.5.

the total simulation time.

Considering the fact that the shapes are arbitrary, the above times for the

two different simulations are certainly acceptable. From the earlier discussions, it

is evident that an increase in the number of panels or geometric complexity will

not change the computational time of the diffusion significantly. It is also evident

that once a wake structure is created, the diffusion algorithm will perform more

efficiently. This is because a greater fraction of the particles are in the wake and

these particles require less intersection checks due to their distance from the body.

Thus, an efficient algorithm to move particles in the vicinity of complex ge-

ometries has been developed. The algorithm handles random displacements of

particles. It is therefore easy to see that it is also capable of handling any ar-

bitrary displacement of the particles. Therefore, the same algorithm is used to

handle the convective displacement of the particles. This enables for the use of

larger time steps (if necessary) during convection.

5.2 Computing the sheet velocity field

The velocity induced by a vortex sheet is highly local and influences only particles

inside the numerical layer that are below the sheet. It is therefore inefficient to
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compute the velocity field of the sheets in a naive manner. In the present work a

simple method is used to efficiently evaluate the sheet velocities.

The algorithm first generates a hierarchy of cells that are organized as a quad-

tree as done in section 5.1.1. The basic tree generation algorithm is described

in sections A.2.1 and 4.2.2. The cause elements are the viscous boxes and the

sheets and other particles are the effects. All cells containing part of a viscous

box are updated as described in section 5.1.1. To find the velocity field due to

the sheets, all the sheets in each childless cell are considered. The viscous boxes

inside which each sheet extends is found by considering the extremities of the

sheet. Once the extent of influence of each sheet is known, the velocity field can

be rapidly computed. Thus each sheet only influences a few sheets and particles

in its vicinity.

5.3 Conversion of sheets and blobs

The conversion of sheets to blobs and vice versa is also an important component

of the hybrid RVM. This can potentially be computationally expensive. While

the conversion of particles to blobs and sheets is automatically handled when the

particles are undergoing a displacement as discussed in section 5.1, it is useful

to be able to convert blobs and sheets outside of the context of particle motion.

For example, when blobs and sheets are merged, their position might change to

conserve the moments of the vorticity. Therefore, it is possible for a sheet to have

moved outside the numerical layer and for a blob to have moved into the numerical

layer. Hence, it is useful to have a fast algorithm to handle these conversions.

It is easy to see that an algorithm similar to the one used to compute the

sheet velocities can be used here. A quad tree of cells is generated for the viscous

boxes, sheets and the blobs. This algorithm is described in sections A.2.1 and

4.2.2. The cause elements are the viscous boxes and the sheets and blobs are

treated as effects. The cells are modified based on the extent of the viscous boxes

as described in section 5.1.1. Each sheet in a cell is considered. It is determined

if the sheet lies within any of the viscous boxes inside the cell. If no viscous box
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is found that contains the sheet, then the sheet is converted to a blob. Similarly,

if a blob lies inside a viscous box, it can be converted to a sheet. Thus by using

the quad tree of cells it is possible to perform the conversion of sheets and blobs

efficiently.

5.4 Annihilation and merging of vorticity

The idea of annihilation and merging of particles was introduced in section 3.5.

This annihilation and merging of the particles can be performed efficiently using

a fast algorithm. The algorithm is similar to those described in sections 5.2 and

5.3. The sheets and blobs are annihilated separately. In each case there are

only “cause” particles in the annihilation or merging because there is only one

species involved. That is, either the sheets or the blobs alone are involved in

the annihilation and merging. The fast algorithm works by first organizing the

particles into a quad tree of cells as described in sections A.2.1 and 4.2.2. The

particles in each cell are considered and nearby particles in the same cell and inside

the neighboring cells are considered for merging or annihilation. Using the tree

structure makes this computation highly efficient.

5.4.1 A numerical study of annihilation and merging

A simple one-dimensional problem is considered to numerically study the annihi-

lation and merging algorithms. Two Gaussian distributions of opposite sign are

considered. The diffusion of these two Gaussian vortices is numerically studied.

The exact solution is known and is the sum of the solutions of the two diffusing

Gaussian distributions. Consider a Gaussian vorticity distribution,

g(x) =
1

σ
√

2π
e−

x2

2σ2 .

The exact solution for the diffusion of this distribution is obtained if at any time

t, σ(t)2 = σ2 + 2νt, where ν is the kinematic viscosity. Since the heat equation

is linear, the exact solution for the diffusion of two oppositely signed vortices is

110



easily obtained as the sum of the two Gaussian distributions.

Two vortices with an initial standard deviation, σ = 0.1 spaced 0.8 units apart

are considered. Each Gaussian is discretized into 201 individual particles inside a

region −5σ ≤ x − x0 ≤ 5σ around the center of the Gaussian, x0. The strength

of each particle is the value of the function at the point into the interval length

between the points. The simulation is run for 10 seconds with ∆t = 0.5s and ν =

0.01. 8 trials are made and the ensemble of these is considered for the computation

of the error. The vorticity distribution is obtained from the new position of the

particles using the optimal smoothing approach discussed in section B.1.5. The

L2 error is computed between the exact solution and the computed solution as the

merging and annihilation parameters are varied. The standard deviation between

the various trials is also computed. Let the annihilation radius1 be denoted as Ra

and the merging radius, Rm and the number of particles in the simulation as N .

Two same signed particles are not merged if the sum of their strengths is larger

than the maximum strength of the initial distribution of particles.

Table 5.2: Error, standard deviation and number of particles as the annihilation
radius, Ra is varied. No merging is performed.

Ra Error Deviation N
0.0000 0.08767 0.05964 402
0.0005 0.08023 0.07072 299
0.0010 0.08348 0.06292 275
0.0025 0.09154 0.06064 248
0.0050 0.08372 0.05567 238
0.0100 0.08830 0.06281 238
0.0200 0.07875 0.05003 227
0.0400 0.09441 0.07167 225
0.0800 0.10493 0.06559 220
0.1600 0.11508 0.05528 204
0.3200 0.17397 0.04277 175
0.6400 0.30842 0.03441 112

Table 5.2 shows the errors for the case where Ra is varied and no merging of

the particles is performed. It is clearly seen that annihilation reduces significantly

1Ra and Rm are defined as non-dimensional lengths and in this case, they are multiplied by
1 to give an absolute distance
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the number of particles. If Ra is reasonably chosen, the errors are slightly better

than those without any annihilation. However increasing Ra too much introduces

significantly larger errors.

Table 5.3 shows the errors for the case where Rm is varied and no annihilation

is performed. The results are not completely conclusive and it appears that the

merging does not introduce any significant errors.

Table 5.3: Error, standard deviation and number of particles as the merging ra-
dius, Rm is varied. No annihilation is performed.

Rm Error Deviation N
0.0000 0.08767 0.05964 402
0.0005 0.10711 0.07512 222
0.0010 0.07724 0.06273 175
0.0025 0.12383 0.07891 140
0.0050 0.11032 0.08056 126
0.0075 0.09315 0.09034 122
0.0100 0.06698 0.05986 120
0.0200 0.07368 0.06853 117
0.0400 0.09047 0.07354 115
0.0800 0.08874 0.07283 113
0.1600 0.09375 0.07180 111
0.3200 0.09671 0.08665 108
0.6400 0.08808 0.08846 108
1.0000 0.07557 0.07623 109
2.0000 0.10095 0.09038 108

Table 5.4 shows the errors as Rm varies with Ra fixed at 0.02. Once again,

there is a large reduction in the number of particles with no appreciable increase

in the errors or in the standard deviation except for increases in the deviation

for the extremely large Rm values. It is therefore clear that using a reasonably

small annihilation distance along with a similar value for Rm (=0.02) reduces

significantly the number of particles by a factor of five without introducing large

errors.
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Table 5.4: Error, standard deviation and number of particles as the merging ra-
dius, Rm is varied and Ra = 0.02.

Rm Error Deviation N
0.0000 0.07875 0.05003 227
0.0005 0.07440 0.05851 137
0.0010 0.10125 0.06857 110
0.0025 0.08256 0.06176 88
0.0050 0.10204 0.06520 78
0.0075 0.09530 0.07307 78
0.0100 0.08630 0.06901 79
0.0200 0.07599 0.06484 76
0.0400 0.08994 0.06697 73
0.0800 0.08616 0.06142 72
0.1600 0.07810 0.06642 72
0.3200 0.08777 0.08258 71
0.6400 0.07864 0.07728 71
1.0000 0.08215 0.08292 71
2.0000 0.09982 0.08378 67

5.4.2 Illustration of utility of annihilation

To illustrate the utility of annihilation of vorticity, the case of an impulsively

started circular cylinder at Re = 3000 is considered. A non-dimensional time

T = Ut/R is defined, where U is the velocity of the cylinder and R is its radius.

Fig. 5.14 plots the vortex particles at T ≈ 2 for the case where no annihilation is

performed. The red colored dots (blobs) and yellow colored lines (sheets) represent

vorticity of a clockwise sense. The blue colored dots and cyan lines represent anti-

clockwise vorticity. All the particles have the same magnitude of vorticity. As can

be seen, there are a large number of parasitic particles. There are about 330000

blobs and 65000 sheets in the simulation. Fig. 5.15 plots the particles at the same

value of T for the case where sheet annihilation alone is performed. The number

of particles reduces significantly (by a factor of 8) and the features of the flow are

much clearer than in the case where no annihilation is performed. Fig. 5.16 plots

the particles at the same value of T with both sheet and blob annihilation. The

number of particles reduces further with attendant improvement in the quality of

the vortex formation. In chapter 7 it is also shown that the annihilation improves

the quality of the results significantly. The order of magnitude reduction in the
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Figure 5.14: Flow past a circular cylinder at Re = 3000, with no annihilation at
T ≈ 2. 336340 vortex blobs and 65323 sheets are present.

number of particles in this case is significant because it results in an order of

magnitude improvement in the computational efficiency of the simulation.

Thus annihilation and merging of the vorticity can be performed efficiently

using the method described here. As shown, the annihilation also results in a

significant improvement in computational efficiency because it reduces the number

of particles in the simulation without introducing much error in the computation.

5.5 Summary

As seen in this chapter, there are other fast algorithms that are used in vortex

methods. Using these fast algorithms, along with the AFMM described in ap-

pendix A and chapter 4, it is possible to simulate fluid flows efficiently using

vortex methods.

It is observed that all of the fast algorithms discussed thus far rely on an organi-

zation of the particles into a tree structure. In the next chapter an object oriented

design for vortex methods is developed. The important components involved in

these algorithms are carefully designed and re-used.
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Figure 5.15: Flow past a circular cylinder at Re = 3000, with sheet annihilation
at T ≈ 2. 43826 vortex blobs and 6897 sheets are present.

Figure 5.16: Flow past a circular cylinder at Re = 3000, with sheet and blob an-
nihilation at T ≈ 2. 36552 vortex blobs and 6031 sheets are present.

115



CHAPTER 6

OBJECT-ORIENTED DESIGN

In chapter 4 and 5, the important fast algorithms involved in the development

of the vortex method were discussed. This chapter provides a brief overview of

object-oriented design. This is followed by a presentation of the object-oriented

design used for vortex methods in the present work. The importance and benefits

obtained by the use of such a design are brought out.

6.1 Introduction

In a vortex method, the need for efficiency motivates the use of complex data struc-

tures and algorithms. In appendix A and chapter 4 it is seen that the AFMM is

a fairly complex algorithm to implement. The AFMM together with the panel

method and the algorithms discussed in chapter 5 require a reasonably large pro-

gramming effort1.

Object-oriented design (OOD) enables one to develop and handle complex

software. More importantly, the design feeds back into the understanding and

development of the algorithms involved. This enables one to make important im-

provements to algorithms. One centrally important aspect of OOD is the creation

of objects or templates that mirror the entities and processes involved in the actual

physical problem. That is, when programming using an object-oriented language,

one tends to think more about the actual problem rather than the implementation

details. A good design also allows the programmer to re-use important parts of

the code. Therefore, object orientation results in the code being easier to under-

stand, read and maintain. The approach may be likened to the development of an

1For example, around 36000 lines of C++ are used to write the libraries developed in the
present work. This excludes the unit-test programs (about 12000 lines of code) and the main
programs.



elegant and powerful notation as done in mathematics. The notation and power

of manipulating abstract symbols in a convenient fashion enables the researchers

to handle complexity and express themselves with a greater degree of clarity. As

with any design process, object-oriented program design is also an iterative one.

A good design therefore requires at least a few iterations of the design process. To

paraphrase Paul Valery, “A design is never finished, it is only abandoned.”

In the present work, the C++ programming language (Stroustrup, 1998) is

used. C++ is efficient and enables object-oriented and generic programming. The

difficulty with C++ is that it is a complex language with many features. However,

it is probably the only commonly available object-oriented language that produces

efficient machine code. This is important for numeric computation.

The Python programming language (van Rossum et al., 1991–) is an excel-

lent, free, dynamically typed, object-oriented, scripting (Ousterhout, 1998) lan-

guage that mixes very well with C++. Python is highly expressive and easy to

understand. This motivated its use for the pseudo-code in appendix A. The dif-

ficulty with Python and other scripting languages is that they are too slow to be

used natively for numerical algorithm development. However, using tools such as

SWIG (Beazley et al., 1995–; Beazley, 1996) and Boost.Python (Abrahams et al.,

2000–; Abrahams and Grosse-Kunstleve, 2003) it is possible to “wrap” existing

C/C++ libraries and use them from Python. This enables one to write scripts

in Python (or other scripting languages) using libraries developed in C++. In

the present work, the C++ libraries developed have also been exposed to Python

using SWIG.

This chapter describes the design and abstractions used in the developed vortex

based solver. The object design is discussed without providing distracting details

on the specifics of the implementation. For a general introduction to object-

oriented programming the reader is referred to Budd (1991).
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Geometric
Elements

Numerical
Layer

Vortex Panels

Viscous boxes
Vortex Sheets

Vortex blobs

Passive particles

Free−stream

Geometry

Figure 6.1: Various entities involved in a vortex method.

6.2 Design overview

The easiest way to understand the design is to first consider the various entities

involved in the vortex method. The basic and most important ones are illustrated

in Fig. 6.1. A detailed discussion of the entities in the figure is provided in earlier

chapters. The first step of the design involves the creation of classes encapsulating

the behavior of these entities. Objects are created as instances of these classes.

The controlled interaction of these objects results in the vortex method simulation.

The algorithms involved in the computation of these interactions are shown in

Fig. 6.2. The items colored red require special algorithms for efficiency.

Thus, the most natural design would be one where the illustrations in Figs. 6.1

and 6.2 directly translate into the program design and code. This is exactly what

object-oriented programming and design allows for. As the description of the

design of the code proceeds, the manner in which the design fits in with general

description of the problem illustrated in the figures will be shown. Before the

design is discussed in detail it is important to note some key issues that drive the

design.

1. All the particles used in the computational scheme can be thought of as
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Initialization

Diffusion

Annihilation

 Store data/
write output

Velocity field

Sheet/blob conversion
First half step of integration
No−slip: create new sheets
Velocity field

Random walk
Reflection/Absorption
Sheet/blob conversion

No penetration: vortex panels

Velocity field:
Freestream
Vortex blobs

Solution to matrix
Find velocity field

Vortex Sheets

Find new position of all entities
Sheet/blob conversion

Second half step of integration
Advection

Figure 6.2: A schematic of the vortex method algorithm. Red items require special
techniques for computational efficiency.

“fluid elements”. These elements are defined by a position, a velocity and
usually carry some fluid properties (like circulation/vorticity). For example,
a vortex blob carries a circulation while a passively advected tracer particle
does not carry any special fluid property.

2. Providing an accurate representation for the geometry is important. A
one-dimensional curve can be represented as a collection of several linear/-
parabolic or higher order elements connected to one another. However, bod-
ies with distinct parts and multiple bodies can pose complications. These
must be handled appropriately.

3. As seen in appendix A and chapters 4, 5, identifying clusters of particles
based on relative distances is an important and commonly used algorithm.
It is important to abstract this algorithm.

4. Appendix A and chapter 4, show that that there are several flavors of the
AFMM. Hence, abstracting a generic AFMM algorithm is of considerable
use.

The next section describes the notation used to illustrate the relationship of

the various classes used in the design.
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6.3 Notation for class diagrams

SomeClassDerivedClass2

SomeOtherClass

DerivedClass1

ClassTemplate
<Parameters>

1..*

2

+ Public Method
# Protected Method
− Private Method

AbstractBaseClass

Composed of

Composed of

Figure 6.3: Legend for the symbols used in class diagrams.

Simple UML (Unified Modeling Language) class diagrams are used to elab-

orate the design. Fig. 6.3 demonstrates the basic ideas. In the figure,

AbstractBaseClass, DerivedClass1 and DerivedClass2 depict an inheritance

relationship. AbstractBaseClass is abstract and this is indicated by the fact

that its name is italicized. DerivedClass1 and DerivedClass2 derive from this

abstract base class. The methods of the abstract base class are prepended with

different symbols (+, # and -) to indicate if they are public, protected or pri-

vate members respectively. The ClassTemplate shows how a class template is

depicted in the figure along with its parameters. DerivedClass2 is composed of

(or contains) SomeClass and SomeOtherClass objects. The white diamond for

SomeOtherClass indicates a lack of ownership. That is, if the memory occupied

by an instance of the DerivedClass2 is freed, the SomeOtherClass objects it is

composed of are not deleted. The black diamond indicates ownership and when

an instance of DerivedClass2 is deleted, the SomeClass objects it contains are

all deleted. The number near the arrow indicates the number of items the class

contains. In the illustration, DerivedClass2 will contain one or more SomeClass

objects and exactly two SomeOtherClass objects.

The next section describes the design of the vortex based solver in detail.
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6.4 Design details

An object which is an instance of a “solver” class manages the entire simulation.

The behavior of this object is very similar to the illustration in Fig. 6.2. The

solver marshals the simulation. For the initialization, the solver object reads a

data file describing the geometry, the input vortex particles, vortex sheets and

various other parameters used in the simulation. The simulation involves the

advection and diffusion of the particles. There are two member functions of the

class that are responsible for the advection and diffusion. These in turn use other

helper objects to divide the work. The solver creates “managers” for the geometry,

vortex blobs, sheets and the panel method. These are described in detail in the

following subsections.

6.4.1 Geometry

In the present work only solid bodies are considered. The geometry is split into

several logical units. A Geometry object describes the geometry completely. Each

Geometry contains several Body objects. A Body in turn is a collection of con-

nected Part objects. Each Part is composed of several CubicGeomElem objects.

A CubicGeomElem is a piecewise cubic element and is at the lowest level of the hier-

archy. A Part is basically a simple curve consisting of connected CubicGeomElem

objects. Clearly, by using this approach one can describe highly complex ge-

ometries and yet retain information on the logical parts of the geometry. Fig. 6.4

illustrates the case of two bodies (Body1 and Body2). Body1 has four parts (Part1

to Part4). Body2 has two parts. Body1 and Body2 together form the geometry.

It is sometimes useful to obtain a representation of this geometry using linear

elements rather than cubic elements2. In order to do this, a separate set of flat

elements are generated and one LinearCover object for the geometry is generated.

This represents the geometry in terms of linear elements.

As described in section 5.1.1, when vortex sheets are used, it is useful to define

2This is useful when detecting particle collisions as described in section 5.1 and interpolating
the vorticity to a grid as described in section B.1.4.
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Part2

Part3

Part4
Part1

Part1
Part2

Body2

Body1

Geometry

Figure 6.4: Geometry consisting of various bodies and parts.

element 2

geometric element 1 Numerical layer

Viscous Boxes

Figure 6.5: Illustration of viscous boxes for curved geometric elements.
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a “viscous box” that is used to discretize the numerical layer. Fig. 6.5 illustrates

two CubicGeomElem’s (geometric element 1 and element 2) that discretize part of

an open body with zero thickness. The geometry is curved and has two sides. It is

covered with four viscous boxes. Each viscous box can be defined as a trapezium

with height equal to the numerical layer height, hnum, and with one side as the

chord of the geometric element. A ViscBox class represents this viscous box.

Instances of the ViscBox class are stored in a ViscBoxManager that manages

their construction and destruction. The viscous boxes are constructed from a

given Geometry object. For closed bodies, ViscBox objects are generated on the

side of interest and for open bodies they are generated on both sides as shown in

Fig. 6.5.

6.4.2 Fluid particles

As illustrated in Fig. 6.1, the vorticity field is discretized into blobs of vorticity.

In the vicinity of the body, the vorticity is discretized into vortex sheets. Vortex

blobs are circular in shape and have a finite radius called the “core radius”. Vortex

sheets on the other hand are flat in shape and have zero thickness and a finite

length. Apart from vortex particles, tracer particles that are passively advected

by the fluid are also useful. As mentioned earlier, these different types of particles

have a velocity and a position associated with them. This suggests a convenient

abstraction in the form of an abstract base class called the FluidElement. The

FluidElement class merely defines an interface for any object that has a position

and a velocity. A concrete instance of this class is a FluidParticle. This is a

simple class that encapsulates a position and a velocity vector. Instances of the

class can be used as passive tracer particles in a simulation. Derived from the

FluidParticle is an abstract VortexElement class that abstracts the behavior of

a vortex blob. A VortexElement is essentially a particle that has a total circulation

and a core radius. A VortexElement can induce a velocity at any point in space.

The complex potential induced by it at a point can also be computed. Concrete

classes derived from the VortexElement class are implemented as the various blobs

found in literature (point vortex, Saffman blob, Chorin blob, Krasny blob, etc.)
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FluidParticle

Sheet1 Sheet2

PointVortex ChorinBlob KrasnyBlob

+ get/set Position()
+ get/set Velocity()

FluidElement

VortexElement

Sheet

Figure 6.6: Class diagram for the fluid elements.

as shown in Table 2.1.

A vortex sheet is a slightly different entity from the vortex blob in that it is

anisotropic and has an orientation. However, it too shares the same properties as a

fluid particle in that it has a position and a velocity. Similar to a VortexElement,

it induces a velocity on another point and also has a known circulation. A Sheet

is therefore an abstract base class derived from a FluidElement. Concrete sub-

classes of the sheet are derived as Sheet1, Sheet2 etc. as discussed in section 2.4.

The class diagram and relationship between the various classes is illustrated in

Fig. 6.6. This is not a comprehensive list or description of the respective classes

but is indicative of the general idea. As can be seen, these classes mirror the

physical entities illustrated in Fig. 6.1.

During a simulation, a very large numbers of the basic particles may be cre-

ated. These particles need to be managed. For each particle class, a separate

manager object is created. An abstract base class FluidElementManager speci-

fies the interface of any particle manager by providing a method to obtain any of
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FluidParticleManager

+ operator[]

BlobManager

+ operator[]

FluidParticle

SheetManager

+ operator[]

BlobManager

+ operator[]

FluidParticleManager

+ operator[]

0.. *

0.. *

SheetManager

+ operator[]

0.. *

+ getFluidElem()
+ size()

FluidElementManager

VortexElement

Sheet

Composed of

Composed of

Composed of

Figure 6.7: Class diagram and containership relation for the fluid element man-
agers.

the contained particles as a FluidElement. This implies that all objects managed

with such a manager can be treated like a FluidElement. This is a key and useful

abstraction that is used to simplify several algorithms. Having one abstract in-

terface that provides a common interface also means that functions can be passed

pointers to this type of a manager and they will work for any of the derived man-

agers so long as the notion of a FluidElement is sufficient. This will be illustrated

with more examples in the sections that follow.

Concrete subclasses of the FluidElementManager are created to contain and

manage the FluidParticle, VortexElement, Sheet, and other objects. These are

called FluidParticleManager, BlobManager, SheetManager etc. Each of these

has a method called operator[] that allows one to obtain the contained object

pointer. The classes and their relationship to the other objects are illustrated in

Fig. 6.7.
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6.4.3 No-penetration BC: the panel method

The panel method (section 3.6) is used to satisfy the no-penetration boundary

condition on the solid body. The panel method discretizes the body into panels.

Vorticity is distributed linearly on the surface of these panels. The panels can

have either a linear or cubic geometry.

LinGeomPanel CubicGeomPanel

CubicGeomElem

VortStrength

+ matrixIndex()
+ strength()

FluidElement

VortexPanel
Composed of

1..3

Composed of

2

Figure 6.8: Class diagram for the vortex panels and related classes.

The behavior of a panel is encapsulated in an abstract VortexPanel class. As

shown in Fig. 6.8, it is derived from the FluidElement class. This is because each

VortexPanel has a control point that has a position and a velocity induced on it.

Derived from VortexPanel are the LinGeomPanel and CubicGeomPanel concrete

classes that use a linear geometry and a cubic geometry respectively.

Each panel contains two VortStrength objects that store information on the

strength of the vorticity at each edge of the panel. The VortStrength object

also stores a position index to the location on the matrix used to solve for the

unknown strengths. This eases the generation of the influence matrix for the

panel method. It also makes it easy to handle attachments and complex shapes.

The VortexPanel objects also contain pointers to the underlying CubicGeomElem

objects that define the Geometry.

An instance of the PanelManager class manages all the VortexPanel ob-

jects. As illustrated in Fig. 6.9, the PanelManager class is derived from the

FluidElementManager class. The panels are organized in the same manner as

the Geometry object into Part and Body objects. A PartPM object is similar to

the corresponding Part object and contains a list of pointers to VortexPanel

objects that represent the panels for a particular part. A BodyPM manages a col-
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BodyPM PartPM

ContactManager

BodyManager

Contact

PanelManager

+ operator[]

FluidElementManager

VortexPanel

VortexPanel

0..*

0..*

1

0..*
0..*

1

Composed of

Composed of

Composed of

Composed of

Composed of

Composed of

0..*Composed of

Figure 6.9: Class diagram for the panel method and related classes.

lection of PartPM objects. The BodyManager class is equivalent to the Geometry

class. In order to handle complex attachments, two additional classes are defined

called a Contact and a ContactManager. Each BodyPM manages a collection of

attached PartPM objects. Each PartPM of a BodyPM is attached to other PartPM

objects at a Contact. The ContactManager manages all the contacts for a partic-

ular BodyPM. The ContactManager is responsible for generating extra conditions

to solve the panel method correctly when complex geometries are used. These

classes and their relationships to other classes are illustrated in Fig. 6.9.

The BodyManager provides a simple but high level interface to the panel

method. It is capable of using a Geometry object and generating the necessary

BodyPM and PartPM objects. It also provides member functions to solve the matrix

and obtain the value of the vorticity of the panels.

With the classes described up to this point it can be seen that all the entities

in Fig. 6.1 with the exception of the FreeStream have been defined above. The

FreeStream class is described in the section on advection (6.4.6). Hence, by

using the classes described above it is possible for the programmer to describe the

physical problem in the computer program.
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6.4.4 Algorithms for hierarchically organizing particles

Given a collection of FluidParticle, VortexElement and VortexPanel objects,

it is in theory possible to develop solvers employing the vortex method. As dis-

cussed in appendix A, computing the velocity field of the vortices on each other is

an O(N2) operation. This can be reduced to an O(N) or O(N log N) computation

using one of many Adaptive Fast Multipole Methods (AFMM). The AFMM algo-

rithm requires that the particles be organized into clusters of particles. As seen in

chapter 5, organizing particles into clusters based on their relative proximity also

turns out to be very useful in other contexts for a vortex method. Particles are

organized into clusters of particles using a quad tree as discussed in section A.2.1.

In order to organize particles into clusters, an abstract base class called the

BasicCell is defined. The class is illustrated in Fig. 6.10. The BasicCell defines

methods to obtain the center and level of the cell (in the hierarchy). The class

also defines methods to indicate if the particular cell is a parent or not. Concrete

subclasses of the BasicCell will contain particles of two flavors, “causes” and

“effects”. Therefore, the BasicCell class provides methods to find the number of

causes (nCause()) and effects (nEffect()) inside it. The concept of causes and

effects is elaborated in considerable detail in section 4.2.2.

Each instance of a concrete subclass of the BasicCell class additionally pro-

vides methods to obtain the parent of the cell, the children of the cell and the

associates of the cell (a maximum of eight associate cells exist per cell). The con-

crete subclass also defines a method called createChildren(), using which the

cell will split itself into four daughter cells of the same type. The cells also provide

methods to set and get the causes and effects in the cell. For brevity, these are

illustrated in Fig. 6.10 only for the AnnihilateCell class. However, the methods

are common to all concrete subclasses of BasicCell.

Derived from the BasicCell are the MultipoleCell and GeneralCell classes

which are abstract. The MultipoleCell abstracts some functions that are useful

for all multipole computations. Specifically, in the fast multipole computations,

the cell treats all effects as FluidElement objects. Thus, the class provides meth-
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SheetCell

AndPanelCellPanelCell

MultipoleCell

SheetCellManager

GeneralCell

CellManager

AnnihilateCell

BlobCell

BasicCell

+ children()

+ compute/shift LocalExp()

+ createMesh()
+ get/set MaxCause()
+ get/set MaxEffect()
+ getCell()

+ set/get Effect()
+ set/get Cause()

+ createChildren()
+ associates()

+ parent()

+ compute/shift Multipoles()

+ Ub/Vb/Wb/Xb interaction()
+ evalLocalExpansion()
+ evalMultipoles()
+ directVelocity()

<CellType>

<CellType>

+ setFluidElement()
+ getFluidElement()

+ refineViscBoxes()

+ center()
+ level()
+ isParent()
+ nCause()
+ nEffect()

Figure 6.10: Class diagrams for the different flavors of cells.
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ods to set and get the FluidElements inside it. Derived from the MultipoleCell

are concrete classes that implement the specifics for a particular type of fast mul-

tipole computation. There are several flavors of the cell types like BlobCell,

PanelCell etc. For a BlobCell, VortexElement objects are the cause particles

and everything else is treated as a FluidElement (an effect). Similarly for the

PanelCell, VortexPanel objects are the causes and the rest are effects. Each

of these concrete subclasses define the methods relevant for the AFMM. This is

illustrated in Fig. 6.10 for the BlobCell class. The PanelCell implements meth-

ods similar to the BlobCell that are suitable for the hybrid flat/cubic panels as

described in section 4.2. The AndPanelCell implements the methods suitable for

Anderson’s method as applied to panels. This is described in section 4.3.2. There

are two other AFMM related cell classes that are not illustrated in the figure.

One is FCPanelCell which implements the methods suitable for the fast cubic

panels described in section 4.3 and the other is called AndBlobCell which imple-

ments Anderson’s method for blobs. AndBlobCell and AndPanelCell are used to

compute the stream function due to the blobs and panels rapidly.

The GeneralCell is different in the way it is implemented. The other cells

store pointers to the various elements contained inside them. However, sometimes

it is useful to store indices of the entities rather than their pointers. This is used in

the context of the conversion of sheets to blobs and vice-versa, to find the velocity

of sheets on each other and to perform a random walk in the presence of arbitrarily

complex geometries. The SheetCell class is used for these.

The AnnihilateCell is a concrete class that enables the annihilation of nearby

vortex sheets in the numerical layer. This cell is special because effects are identical

to the causes in its context.

Since all of these cell types are derived from a BasicCell, they all have member

functions that specify the number of cause and effects in the cell. They also provide

methods to access to the colleagues of the cell. Therefore, it is possible to use a

CellManager class template with template parameter <CellType>, that will orga-

nize the corresponding cells into a quad-tree based on the number of causes and ef-

fects in the cell and its colleagues. The algorithm is itself described in section 4.2.2
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and in (Ramachandran et al., 2001, 2003). The CellManager<CellType> there-

fore creates and manages cells. The important methods defined by this class are

illustrated in Fig. 6.10.

A SheetCell is slightly different because it organizes Sheet and ViscBox ob-

jects. These objects have extent and an orientation. In order to handle this a

SheetCellManager<CellType> is derived from the CellManager. This defines

a special method that updates the generated cells with information on which

ViscBox object passes through the cells. The specifics of the algorithm are de-

tailed in section 5.1.1.

Thus, in this work cells are used to hierarchically organize a distribution of

particles. Each specialized cell class implements the specifics of the algorithm in

which one is interested. The CellManager generates and organizes these cells.

Once the cells are organized it is possible to use them in a variety of fast algo-

rithms. Therefore, with one implementation of the CellManager class template

(implemented as one header file and one source file), it is possible to build the cell

structure for eight different algorithms. Thus, object-oriented design and generic

programming enables a large amount of code re-use. This enhances the readability

and maintainability of the code.

6.4.5 Adaptive Fast Multipole Method

In order to reduce the O(N2) computation of the blob velocities to an O(N) one,

an adaptive fast multipole method (AFMM) (Carrier et al., 1988) is used. This is

described in detail in section A.3. There are several flavors of the AFMM that are

developed and used in the present work. Two algorithms to find the blob velocities

have been developed, one using the AFMM and the other using Anderson’s FMM

without multipoles approach (Anderson, 1992). Three methods are implemented

to find the effect of the panels on other particles. One using the approach detailed

in section 4.2, the second using cubic panels as done in section 4.3 and the third

using Anderson’s scheme as described in section 4.3.2.

All of these use the same algorithm for the AFMM and require a similar
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cell structure. As seen in the previous section, the different cell types han-

dle the specifics of the algorithm and the CellManager generates the quad-

tree. A FastMultipoleManager class template with parameters, <DataManager,

CellType> is used to implement the AFMM. The DataManager parameter is either

a BlobManager or PanelManager. The parameter CellType can be any subclass

of the MultipoleCell that implements the necessary methods for the AFMM.

The FastMultipoleManager instantiates the appropriate CellManager and uses

it internally to generate and manage the cells. The class then uses these organized

cells to implement the AFMM.

The key idea used in the abstraction is in the treatment of the effects by using

a FluidElement. For example, consider the case where the velocity of the blobs is

to be computed on the panels, sheets and passive particles. The velocity method

of the FastMultipoleManager is given a list of pointers to FluidElementManager

objects. Pointers to PanelManager, SheetManager and FluidParticleManager

objects are passed to the method. Since all of them are sub-classed from the

FluidElementManager class, the velocity on all of them can be easily computed

in one stroke. The implementation of the FastMultipoleManager closely mirrors

the pseudo-code given in section A.3.5.

Hence, using these abstractions it is possible to use one implementation for

the CellManager and one for the FastMultipoleManager and yet develop five

different flavors of the AFMM. In order to obtain a fast velocity due to a large

number of particles the user does not even need to know about the CellManager

since the FastMultipoleManager provides a high level interface that hides these

details. Thus, the object-oriented design developed here results in code that is

fairly easy to understand, use and extend. As shown above, it is possible to

develop different flavors of the algorithms easily and yet re-use large parts of the

key algorithms.
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6.4.6 Advection

In order to advect the particles based on the velocity field, the

FastMultipoleManager class template is used to obtain the velocities due to the

blobs and vortex panels. The velocity of the Sheet objects on other sheets and

particles is obtained using a SheetVelocityManager object. As described in sec-

tion 5.2, this object also organizes the particles into clusters of cells using the

SheetCell class and then computes the velocities. Using a quad tree structure to

locate the sheets and particles makes the computation very efficient.

In order to simulate a free-stream, an abstract class called FreeStream is cre-

ated. ConstFreeStream is a constant free stream class that is a concrete subclass

of the FreeStream class. The FreeStream can set the velocity on any given

FluidElementManager object. Thus, the velocity due to the FreeStream can be

computed on any of the particles in the vortex method.

Using the computed velocity due to all the interacting species, the ODEs gov-

erning the particle motion are solved to obtain the new particle positions. The

ODE solver implemented is not general and is a fairly straight forward implemen-

tation. Euler’s first order method, Runge-Kutta second order and fourth order

methods are implemented. During the intermediate steps of the advection (in the

second order and fourth order method) it is possible for sheets to be converted to

blobs and vice-versa. The manner in which this is handled is discussed in the next

section.

6.4.7 Diffusion

In order to simulate diffusion the blobs and sheets are made to undergo a ran-

dom walk. The details of the algorithms used in this context are discussed in

section 3.4. The motion of the particles is random. If the particle strikes a solid

wall it is to be reflected off the surface of the wall. This is done efficiently us-

ing a DiffusionManager class. The algorithms to perform this use a quad-tree

structure to accelerate the computation and are described in considerable detail in
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FastMultipoleManager CellManager
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Proselytizer

SheetVelocityManager
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<DataManager, CellType>
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<AnnihilateCell>1

<SheetCell>

Composed of

Composed of

Composed of

Figure 6.11: Relationship of fast algorithms and the cell managers.

section 5.1. The class uses the SheetCells and a SheetCellManager to manage

them.

In order to convert blobs to sheets and vice-versa, a Proselytizer class is used.

This class also uses a quad tree structure via the SheetCellManager class template

for efficiency. An overview of how the class works is provided in section 5.3.

Thus, by handling the diffusion and inter-conversion of sheets and blobs the

diffusion equation is solved.

Annihilation and merging of the sheets and blobs are handled using an

Annihilator class. This class also uses a SheetCellManager to efficiently or-

ganize the particles into clusters. The algorithmic details of the annihilation and

merging process are described in sections 3.5 and 5.4.

6.4.8 Vortex methods

The aspects of the vortex method algorithm that require the use of fast algorithms

are are colored red in Fig. 6.2. The various classes responsible for these fast

algorithms have been described above. These classes and their relationship to the

CellManager class are illustrated in Fig. 6.11.

By putting together all the described components it is possible to develop

an efficient vortex method. In the present work the main driver class (or solver
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class) is called Vebtifs which stands for Vortex Element Based Two-dimensional

Incompressible Flow Solver. This class is responsible for the entire algorithm as

described in section 6.2. Its structure is similar to that depicted in Fig. 6.2.

Apart from the classes described in the previous sections there are other helper

classes used to compute the diagnostic quantities, transfer the vorticity to a grid,

perform graphics, generate data files etc. For brevity and clarity these have not

been discussed here.

6.4.9 Unit testing

The code developed is tested fairly rigorously using unit tests written with the

CppUnit (Feathers et al., 2000–) library. A unit test is essentially a program

where the various objects and their methods are tested systematically. Each object

is set to a known state and the results obtained by invoking different methods

are checked against expected values. If the values match, the test passes, if not

the test fails. The CppUnit library formalizes this by providing a set of useful

classes that are used to write the tests. The library makes it easy to see where

the error occurs. It also helps to automate the test by creating “test suites”.

Thus, it is possible to check the state of the developed code. Writing tests is

usually not a pleasant activity and for complex libraries it involves a reasonable

amount of work3. However, writing tests is extremely important to ensure program

correctness. The tests also make it easy to change the library. The unit tests ensure

that program correctness is maintained as changes are made to the code. This

allows the developer to be confident that the changes have not affected any of the

tested functionality.

3In the present work about 12000 lines of code have been written exclusively to test the
library.

135



6.5 Summary

In this chapter an object-oriented design for vortex methods was presented. Cen-

tral to the implementation are several abstractions. The interacting particles are

represented as subclasses of FluidElement which are managed using subclasses

of the FluidElementManager class. The use of the CellManager class template

abstracts the centrally important algorithm which generates the hierarchy of cells

used to identify clusters of particles. The FastMultipoleManager class template

defines the adaptive fast multipole method. This class template is used by various

flavors of the AFMM. The overall design of the code maps directly into the physical

process of the vortex method simulation. This makes the code easy to understand

and develop. Thus, using the developed object-oriented design it is possible to

implement an efficient, understandable and easy to extend vortex method based

flow solver.
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CHAPTER 7

PARAMETRIC STUDY OF THE RVM

In the previous chapters the theoretical, implementation and design details of

vortex methods were described. There are various parameters involved in an im-

plementation of the random vortex method. In this chapter, a parametric study

is carried out to determine the optimal choice of these parameters. The compu-

tational scheme and the parameters to be varied are reviewed first. Schemes to

relate the parameters to each other are investigated. The flow past an impulsively

started circular cylinder at Re = 3000 is considered. The different parameters

are varied and the results compared with available data. Using the study, several

recommendations are made regarding the optimal choice of the parameters.

7.1 Computational method

Consider the flow past an impulsively started circular cylinder of radius, R. The

circular cylinder is discretized into N viscous boxes of equal size. These viscous

boxes are used to release vortex sheets from the surface of the cylinder. If the

standard viscous splitting procedure (equation (3.1)) is used, the vortex method

proceeds as follows:

1. Compute the slip velocity due to all the vorticity, free stream and vortex
panels at the control point of each of the N viscous boxes.

• The velocity due to the vorticity is computed using an adaptive fast
multipole method (AFMM) discussed in section A.3.

• The vortex panels are responsible for satisfying the no-penetration con-
dition. A panel method with cubic panels and a linear vorticity distri-
bution as described in section 3.6.2 is used for this. A fast multipole
technique is used to accelerate the velocity computation as described
in section 4.3.

• The velocity due to the free stream is trivial to compute since it is a
constant.



2. Based on the slip velocity at the control point of each viscous box, sheets
are released in order to offset the slip. The details of the sheet release are
described in section 3.4.1. These new sheets are created just on the surface
of the viscous boxes.

3. The existing blobs and sheets (excluding the newly created ones) are then
convected using the velocity field. A second order Runge-Kutta scheme
(equation (3.3)) is used to integrate the ODEs. Other integration schemes
are also studied.

4. All the blobs and sheets (including the newly created sheets) are then dif-
fused using a random walk.
• The blobs are given a random displacement along both x and y direc-

tions.

• Sheets are given random displacements along the normal to the surface.
The displacement of the sheets uses a tagging procedure as described
in section 2.4. Subsequently, the influence of tagging is studied by
disabling it.

• If a sheet leaves the numerical layer it is converted to a blob and it
looses its tag value. If a blob enters the numerical layer it is converted
to a sheet with a new tag value that is not equal to any of the existing
tag values of the other sheets.

5. The sheets and blobs are annihilated and merged as discussed in section 3.5.
The algorithm used for the merging and annihilation is discussed in sec-
tion 5.4.

6. The algorithm then repeats from step 1.

If Strang discretization (equation (3.2)) is employed the algorithm is as follows.

1. Compute the slip velocity and release new sheets to satisfy the no-slip bound-
ary condition.

2. Diffuse the sheets (both newly created and existing) and blobs with a random
walk using a time step of ∆t/2.

3. Convect the particles by integrating the ODEs using an appropriate scheme.

4. Compute the slip velocity and release new sheets to satisfy the no-slip bound-
ary condition.

5. Diffuse the sheets (both newly created and existing) and blobs with a random
walk using a time step of ∆t/2.

6. Annihilate and merge the vorticity.

7. Repeat from step 1.

Unless otherwise mentioned, Strang discretization is not used.
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7.2 Computational parameters

The parameters and key elements involved in the computational scheme are listed

below.

• Type of blob: the Chorin blob is used (see Table 2.1).

• δ is the core radius of a blob.

• N is the number of viscous boxes on the body. Note that the viscous boxes
are equal sized and all of them release sheets.

• R is the radius of the cylinder.

• ∆t is the time step.

• ν is the kinematic viscosity (µ/ρ).

• Re is the Reynolds number.

• γmax is the maximum strength of an individual vortex sheet. The sheet
strength is quantized by this number and integral multiples of these sheets
of strength γmax is released to satisfy the no slip condition. In some cases
an extra sheet having a fraction of the strength γmax are released to satisfy
the slip exactly.

• hnum is the numerical layer height. The numerical layer is the layer inside
which the sheets exist. When a sheet leaves this layer it is converted to a
blob and when a blob enters this layer it is converted to a sheet.

• U is the free stream velocity of the fluid far upstream of the body.

• Ra is the annihilation distance factor and Rm the merge distance factor.
If two sheets of length λ are to be considered for annihilation, Raλ is the
largest allowed distance between them. Similarly, Rmλ is the largest allowed
distance for the merging of two sheets. The same radii are used for the blobs
also.

These are a large number of parameters. It is possible to relate these parame-

ters in two different ways. This is done in the following section.

7.3 Determination of parameters

In this section, two ways to inter-relate these parameters are proposed called

scheme A and scheme B. This results in four parameters which can be used to
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determine the rest. The length scale is determined by a parameter k (or k1 if

scheme B is used). The time scale is determined by a parameter C. γmax and

Ra are the other free parameters. Thus, by using these four parameters, with the

respective scheme, all the other parameters can be readily obtained. The following

sub-sections describe the schemes in detail.

7.3.1 Scheme A

The definition of Re is given by,

Re =
2RU

ν
. (7.1)

In general, a vortex blob cannot penetrate the body because that would introduce

vorticity into the solid body. In traditional RVM implementations this is not

enforced. In the present work this condition is enforced resulting in the following

condition,

δ ≤ hnum. (7.2)

The numerical layer height can chosen to be some multiple of the diffusion length

scale (
√

2ν∆t), therefore,

hnum = k
√

2ν∆t. (7.3)

The above choice is usually made in implementations of the RVM. The length of a

viscous box side (or the length of the sheet) is given by λ = 2πR/N . The velocity

due to a blob at a distance equal to the core radius (along with its image vortex)

must match the velocity due to a sheet. Therefore,

γ =
2Γ

2πδ
, (7.4)

where γ is the vortex sheet intensity and Γ is the strength of the vortex blob. The

factor 2 in the numerator of the right-hand-side arises due to the image vortex.

Each sheet has the same length, λ, as the viscous box on the body. Hence, to

140



conserve circulation, Γ = γλ. Therefore, from equation (7.4) it is seen that,

δ =
λ

π
. (7.5)

Using equation (7.5), equation (7.2) now becomes,

2πR

Nπ
≤ k

√
2ν∆t

2R

N
≤ k

√
2ν∆t. (7.6)

Puckett (1991) suggests that a condition on ∆t be imposed such that the

distance traveled by a sheet in one time step is less than the length of the sheet.

This can be expressed as,

MU∆t = Cλ

where M is a upper bound on the velocity in the flow and C is a user determined

constant. Therefore,

∆t =
C2πR

MUN
(7.7)

Using equation (7.6) and the definition of the Reynolds number, equation (7.1),

the following is obtained,

2R

N
≤ k

√
2
2RU

Re

2CπR

MUN
,

N ≥ MRe

2πk2C
. (7.8)

Re is known and M can be estimated. This means that the number of viscous

boxes, N , is directly proportional to the Reynolds number. This is interesting

to note since it is normally argued (Leonard, 1980) that the number of particles

released should be proportional to Re1/2. In the present case N ∝ Re because

there is a strong restriction on ∆t as given in equation (7.7) and the numerical

layer height is in turn tied to ∆t.
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7.3.2 Scheme B

Scheme B differs from A in relating hnum to the other parameters. Physically, the

numerical sheet layer is the same as the boundary layer. Therefore, it is natural

to relate hnum to the boundary layer height. From boundary layer theory, hnum

can be expressed as,

hnum = k1
L√
Re

, (7.9)

where L is a length scale and in this case equals 2πR. k1 is a numerical factor

that can be chosen. k1 is similar to k used in scheme A. Using the above relation

and equations (7.2) and (7.5) results in the following,

L

πN
≤ k1

L√
Re

N ≥
√

Re

πk1

(7.10)

From equation (7.7) and (7.10) it is clear that,

∆t =
CL

MUN

≤ CLπk1

MU
√

Re

The above relations show that in scheme B, N is independent of ∆t and ∆t is

dependent on C and k1. This approach in general will require fewer particles. The

other advantage with this scheme is that C can be changed without changing the

number of panels N . However, it is noted that most high-resolution vortex method

implementations tend to limit the core radius of the blob as done in scheme A.

Shiels (1998), for example, explicitly mentions that the core radius can be chosen

as a multiple of the viscous diffusion length scale.

There is some flexibility in choosing k, k1 and C. Clearly, once N is known from

either equation (7.8) or (7.10) the other parameters can be found. The only other

free parameters are γmax and Ra, which are also varied. Rm is not considered

here since Ra is the more sensitive parameter. This was seen in the numerical
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experiments performed in section 5.4.1. Hence, the variation of these parameters

(k (or k1), C, γmax and Ra) are studied. Initially scheme A is used. Subsequently,

scheme B is used and the results of both are compared. It is to be noted that the

results for the variation in γmax and Ra are independent of the scheme chosen.

7.4 Primary diagnostics

To study the results obtained, the drag coefficient, Cd, versus time is used as

the primary diagnostic quantity. It is well known (Koumoutsakos and Leonard,

1995; Shiels, 1998; Ploumhans and Winckelmans, 2000) in the vortex methods

community that the drag history is a good diagnostic for the accuracy of such

a simulation. Ploumhans and Winckelmans (2000) also use the production of

circulation on the upper surface of the cylinder as a diagnostic. However, in this

chapter only the drag history is used.

The drag coefficient is obtained using the hydrodynamic impulse. The resulting

curve is smoothed using piecewise polynomials as described in section B.1.2.

The noise level in the force history is also obtained by smoothing the computed

load using an appropriate scheme and finding the difference between the smoothed

and noisy curves using equation (B.5). It is to be noted that the initial singular

part of the drag curve is ignored for this computation since it introduces spurious

errors.

Since the number of parameters and possible combinations of them is large,

the results are studied by comparing the drag coefficient, Cd, with the results of

Koumoutsakos and Leonard (1995) (referred to hereinafter as KL) for the same

Reynolds number. The data from their curves have been extracted. The process

of extracting the data introduces errors and simple estimates suggest that up to

1% error is possible in this process. The errors are significant near t = 0 due

to the singular behavior of the curve. Any small errors in the extraction of the

correct value of t near this singular region can prove expensive. Thus, the forces

are compared only when T = Ut/R > 0.5 when the data is close to a minimum
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and is well behaved. The comparison of the present data with that of KL is

done by first interpolating the values from KL to the values of t for the present

computations. The difference in the solutions is then found using equation (B.5),

which is an L2 norm. Thus, using this approach it is possible to easily compare

the present results with those of KL. It is to be noted that the results from KL

are only available up to T = 6. Therefore, the error is computed for 0.5 ≤ T ≤ 6.

Initially, the computations are performed with a single random number seed.

Subsequently, several computations are made with different random number seeds

and the results of these are ensemble averaged. In these cases the standard devi-

ation, σ, of the various runs are computed. If the expected value of a measured

quantity is L̄ =
∑N

1 Li/N , where the individual values are Li, then the standard

deviation, σ, for N values is given as

σ =

√∑N
1 (Li − L̄)2

N − 1
. (7.11)

Vorticity contours are also plotted but in the present case they are only used

to provide a qualitative feel for the results.

7.5 Parametric study with scheme A

For all the cases considered in this section, sheet release style 1 (section 3.4.1) is

used. All the vortex sheets have the same strength. Thus no merging of vortex

sheets or blobs is possible or necessary. The annihilation is only performed for the

sheets.

7.5.1 Variation of C

Given that Re = 3000, the values of U and R are assumed to be unity. From

equation (7.1), ν = 1/1500. For a circular cylinder, M = 2.

In order to reduce C, k is held fixed and ∆t is reduced gradually. This approach
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limits the motion of the sheet or blob relative to the size of the sheet. It also

reduces the numerical layer height. This makes the computations more accurate.

If it is assumed that δ = hnum, from equation (7.6) and (7.7) it can be seen that,

N =
2R

k
√

2ν∆t
,

C =
N∆t

πR
.

Hence N increases as ∆t and C are decreased. Since R and ν are known it is

seen that,

N =

√
3000

k2∆t
.

This value of N is truncated to the nearest integral value and k is set to 3.

The ∆t values considered are shown in Table 7.1. Ra is kept fixed at 0.25

and γmax at 0.05m/s. The accuracy of the AFMM is set to 10−6. Second order

integration is used. Sheet release style 1 is used. The simulations are run up to

T = Ut/R = 30. Sheet 1 is used.

Table 7.1: Parameters chosen as C is varied for scheme A.

Case ∆t (s) N hnum (m) C
1 0.015 150 0.01342 0.71620
2 0.01 184 0.010954 0.58569
3 0.0075 212 0.0094868 0.50611
4 0.005 260 0.007746 0.41380
5 0.00375 300 0.00670820 0.35810
6 0.0025 366 0.00547723 0.29125
7 0.001875 422 0.00474342 0.25186
8 0.00125 518 0.00387298 0.20611

For the problem considered, it is known that the total circulation in the flow

should be zero. This is used as a first test for the code. When sheets are used

for the simulation there is a peculiar problem. Vortex sheets only influence the

flow locally whereas blobs influence the flow globally. The velocity field of the

blobs cannot introduce any circulation around the body. The influence of vortex

sheets is local and the circulation due to the sheet on the body is not zero. If the
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total strength of the sheets around a body is not zero (due to a random walk or

numerical errors), these sheets will introduce a non-zero total slip on the body. In

order to satisfy the no-slip condition, new sheets will be released that have a non-

zero total circulation. Hence, the total circulation due to the blobs and sheets

will be non-zero. There is no means for this to be corrected in the simulation.

Consequently, the total circulation in the flow will remain non-zero. In order to

correct this behavior a circulation equal to that of the negative of the total blob

circulation is applied around the body (i.e. the panel method is solved with a net

circulation). This tends to bring the circulation back to zero. Unfortunately, this

approach is not easy to apply when multiple bodies are involved since it is unclear

what circulation must be assumed around each body. Another problem with this

is that the change in circulation due to an excess of sheets is a local effect but

the scheme to stabilize it is not local at all. This is a serious disadvantage of

using sheets. Nonetheless, it is important to systematically study the different

approaches to satisfying this total circulation condition. It is to be noted that this

issue with the vortex sheet method has been specifically mentioned in the work of

Cheer (1983). The correction employed there is identical in principle to the one

used in this work.

If the total circulation in the flow is known at each time instant as Γi, the

average error in the circulation, EΓ, is given by,

EΓ =

∑Nt

i=0 | Γi |
Nt

, (7.12)

where Nt is the number of time steps.

Consider Case1 from Table 7.1, initially the circulation of the panel method is

set to the strength of the blobs in the flow with a negative sign. EΓ is computed at

T = 30. It is found that EΓ = 0.007942 and the maximum value of the circulation

is 0.03351. When the total circulation is set to zero without any correction to

account for the sheets, EΓ = 0.55651 and the maximum value of the circulation is

1.48063. When the total circulation of the circular cylinder is set to the negative

of the total strength of the sheets it is fond that EΓ = 0.75453 and the maximum
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value of the circulation is 1.6775. When the total circulation of the circular cylinder

is set to the negative of the total strength of the sheets and the blobs it is fond

that EΓ = 0.061432 and the maximum value of the circulation is 0.30575.

This clearly indicates that the best approach to set the total circulation to

the negative of the total strength of the blobs in the flow. This is also what is

suggested by Cheer (1983).

Initially, the Park and Miller random number generator with Bays-Durham

shuffle was used. Details on this algorithm are available in Press et al. (1992). This

generator has a period of about 2.1×109. Case8 has about 145000 particles at the

end of T = 30, taking a total of 24000 time steps. If an average of 70000 particles

is assumed throughout the computation then this computation would require the

generation of about 2×24000×70000 = 3.36×109 random numbers which exceeds

the period of the generator. Hence, the random number of generator of L’Ecuyer

with Bays-Durham shuffle (Press et al., 1992) is implemented. This generator has

a period greater than 2× 1018. This is sufficient for all the calculations performed

in the present work.

Table 7.2: Error in circulation, EΓ and maximum circulation, Γmax for different
cases.

Case EΓ Γmax

1 0.007942 0.03351
2 0.007765 0.03415
3 0.006686 0.02815
4 0.005722 0.02537
5 0.005743 0.02409
6 0.004724 0.02490
7 0.005234 0.02456
8 0.004527 0.01820

Table 7.2 shows EΓ and Γmax for the various cases. From the computed data,

the drag coefficient, Cd, is computed using the vortex momentum approach as

described in section B.1.2. Piecewise polynomials are used to obtain the vortex

momentum data. This is differentiated to obtain the load. For Case1, 60 points

per piecewise polynomial are chosen. The polynomial order is chosen to be 6 with
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an overlap of 50%.

The results for cases 1 to 4 are plotted in Fig. 7.1. As can be seen, the drag

forces are considerably different after T = 2.5. Fig. 7.2 plots a zoomed view of

the load for small times. Clearly there is much better agreement at smaller times.

Similarly, Figs. 7.3 and 7.4 show the variation of Cd for cases 5 through 8. It is

seen that there are small variations in the load starting from T = 2.5 onwards.

Subsequently these differences become significant. There is sensitivity to initial

condition at this Reynolds number and different random seeds tend to take dif-

ferent paths. This manifests in the differences beyond T = 2.5. Table 7.3 shows

the variation of the error and the noise level for each case. These are computed

as indicated in section 7.4. The noise level clearly increases as ∆t drops. This

is easy to explain since the load is computed using a central difference. Due to

the random walk, there is an error in the numerical value of the hydrodynamic

impulse computed using equation (B.1). This error due to the random walk be-

haves as O(
√

∆t). Therefore, differentiating the hydrodynamic impulse results in

an O(1/
√

∆t) behavior in the drag coefficient. Thus reducing ∆t produces more

noisy Cd curves. However, the error in column 3, for Table 7.3 is harder to ex-

plain. A bi-modal behavior is seen. When cases having odd or even numbers are

considered separately, there is a clear reduction in the error. However, scheme A

is peculiar in that as ∆t reduces, so does the spatial resolution of the problem.

Additionally, due to the random nature of the diffusion, it is hard to determine if

this is a result of the sensitivity to initial conditions. Only if a reasonably large

number of runs are made and the ensemble considered is it possible to make any

conclusion on this matter. This is explored subsequently.

7.5.2 Variation of k

The variation of k is studied next, keeping all other parameters fixed. C is fixed at

0.4, Ra at 0.25 and γmax at 0.05m/s. The accuracy of the fast multipole method

is set to 10−6. The simulations are run only up to T = 10 because it is clear from

the results of section 7.5.1 that running the simulation for longer only produces
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Table 7.3: Error as compared to KL and noise level as ∆t is varied for scheme A.

Case ∆t Error Noise Level
1 0.015000 0.09541 0.29523
2 0.010000 0.06611 0.38207
3 0.007500 0.09508 0.46202
4 0.005000 0.05303 0.56456
5 0.003750 0.07328 0.65465
6 0.002500 0.05472 0.85738
7 0.001875 0.08877 0.92061
8 0.001250 0.04721 1.19986
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Figure 7.1: Cd versus T for cases 1 to 4.
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Figure 7.2: Zoomed view of Cd versus T for cases 1 to 4.
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Figure 7.3: Cd versus T for cases 5 to 8.
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Figure 7.4: Zoomed view of Cd versus T for cases 5 to 8.

erratically different results.

From equation (7.8) and noting that M = 2 for the flow past a circular cylinder

it is seen that,

N =
Re

k2πC
.

In the present case, Re = 3000. Given N ,

∆t =
πC

N
.

The cases presented in Table 7.4 are considered. The value of C is approximately

0.4. N is found by rounding the value obtained using C = 0.4 to the nearest even

integer.

It is obvious that as k increases, the number of blobs and sheets used in the

simulation will reduce. Thus the resolution of the simulation drops as k increases.

Table 7.5 shows the variation of the number of blobs and sheets as the value

of k increases. The variation of the number of blobs is plotted in Fig. 7.5. As can

be seen the variation is not linear. Table 7.5 also shows the L2 error in the drag

curve as compared to KL and also the noise levels. The results clearly indicate

that as k reduces the error in the solution drops significantly. The increase in the
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Table 7.4: Number of panels, N and ∆t for different k values given that C ≈ 0.4.

k N ∆t hnum

1.5 1062 0.00118435 0.00188496
2.0 596 0.00210552 0.00335103
3.0 266 0.00473741 0.00753982
4.0 150 0.00842206 0.01340413
5.0 96 0.01315947 0.02094395
6.0 66 0.01894964 0.03015929
7.0 50 0.02579257 0.04105014
8.0 38 0.03368825 0.05361651

Table 7.5: Number of blobs and sheets at T ≈ 10 for various values of k. Also
shown is the error as compared to KL and the noise level in the curves.

k Nblob Nsheet Error Noise level
1.5 141827 1227 0.03606 1.03058
2.0 72618 994 0.04220 0.81930
3.0 30425 976 0.05737 0.61076
4.0 16541 915 0.10574 0.50551
5.0 10523 751 0.15057 0.48245
6.0 7077 555 0.24447 0.45836
7.0 5222 508 0.32075 0.43205
8.0 3822 426 0.29403 0.41546
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Figure 7.5: Number of blobs versus 1/k at the end of T = 10.

noise levels is only due to the reduction in ∆t.

Figs. 7.6 and 7.7 plot the variation Cd versus T as k is changed. The curves are

smoothed using running averages because only the trends are of interest here. The

plots for k between 1 and 4 were generated using the same averaging parameters

while the plots for k = 5 and 7 were generated with a different averaging window

since the number of data points in these cases is much less. As can be seen from the

figures, using values of k up to 4 are reasonable with 2-3 being the best compromise

whereas using k = 4 produces oscillatory loads after 4 seconds. When k is greater

than 3 the results are poor and show spurious oscillations. From table 7.5, it is

seen that the k = 3 case is the best compromise, with few number of particles and

reasonably accurate results.

Figs. 7.8, and 7.9, plot the vorticity field, ω, at T ≈ 5 with k as 1.5 and 3. As

can be seen, the vorticity distribution for the k = 1.5 case is better than the case

where k = 3. However, this case requires a very large number of particles.

7.5.3 Variation of γmax

To study the effect of the variation of γmax, the following values are chosen. C ≈
0.4, k = 3 and Ra = 0.25. γmax is varied from 0.00625 to 0.4.
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Figure 7.6: Cd versus T as k varies between 1.5 to 4.
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Figure 7.7: Cd versus T as k varies between 5 to 7.
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Figure 7.8: Vorticity contours at T ≈ 5 with k = 1.5.
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Figure 7.9: Vorticity contours at T ≈ 5 with k = 3.

155



Table 7.6: Number of blobs and sheets at T ≈ 10 for various values of γmax. Also
shown are the error and noise level in Cd versus T .

γmax Nblob Nsheet Error Noise level
0.00625 235646 7440 0.04715 0.13266
0.01250 118917 3726 0.04653 0.21589
0.02500 59587 1991 0.08181 0.35279
0.05000 30425 976 0.05839 0.61045
0.10000 15617 510 0.10192 1.08369
0.20000 8235 268 0.09549 1.83416
0.40000 4227 131 0.19750 2.96449

Table 7.6 shows the variation of the number of blobs and sheets as γmax is

increased. As can be expected, the variation is almost linear. The noise levels in

the load and the error as compared to KL are are also presented in Table 7.6. It

is clear that reducing γmax reduces the noise levels and the errors. The reduction

in noise is almost linear. A decreasing trend in the errors is also observed.
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Figure 7.10: Smoothed Cd versus T as γmax is changed.

Figs. 7.10 and 7.11 plot the variation of Cd versus T (processed using a running

average with a 15 point window) as γmax is varied. Up to a γmax of 0.05 it can be

observed that the initial behavior is picked up very well by all the cases. However,

156



0 1 2 3 4 5 6 7 8 9 10
T

0.25

0.5

0.75

1

1.25

1.5

1.75

2

C
d

γ
max

 = 0.00625
γ

max
 = 0.1

γ
max

 = 0.2
γ

max
 = 0.4

Figure 7.11: Smoothed Cd versus T as γmax is changed.

for T > 3, there are small differences. It is to be noted that the results are

fairly close to each other. Once γmax increases beyond 0.05 there are significant

differences.

Figs. 7.12 and 7.13 plot the vorticity field for the γmax = 0.00625 and 0.0125

cases. The plot for the γmax=0.05 case is seen in Fig. 7.9. The plots in Fig. 7.12

and 7.13 clearly show the high resolution achievable with the RVM.

7.5.4 Variation of Ra

To study the variation of Ra the parameters are chosen as follows. C ≈ 0.4 and

k = 3 as used in the previous section. γmax = 0.0125 and Ra is varied from 0.0 to

0.4. When Ra = 0.0 there is no annihilation performed. In these cases only the

vortex sheets are annihilated.

Table 7.7 shows the variation of the number of blobs and sheets as the param-

eter Ra is varied. Raλ is the radius of the circle inside which sheets are considered

for annihilation. The length of a sheet is λ. As can be seen, when there is no anni-
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Figure 7.12: Vorticity contours at T ≈ 5 with γmax = 0.00625.
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Figure 7.13: Vorticity contours at T ≈ 5 with γmax = 0.0125.
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Table 7.7: Number of blobs and sheets at T = 6 for various values of Ra. Also
shown are the error and noise level in the curve for Cd.

Ra Nblob Nsheet Error Noise level
0.00000 1360403 93094 0.09236 0.54561
0.00625 320503 18919 0.04988 0.31804
0.01250 168885 9347 0.05591 0.26440
0.02500 111465 5739 0.04941 0.23737
0.05000 93587 4579 0.05588 0.22007
0.10000 86702 4284 0.04154 0.21936
0.15000 85129 3811 0.03809 0.22105
0.20000 84265 4020 0.03884 0.21396
0.25000 83856 3929 0.04653 0.21589
0.30000 83111 4024 0.04200 0.20756
0.35000 82985 4207 0.04495 0.21780
0.40000 82674 4087 0.07329 0.21674

hilation, the number of particles generated is extremely large. Even the smallest

value for Ra significantly reduces the number of particles. When Ra = 0, the flow

contains a large number of blobs and sheets having opposite sign and very close

to each other. These do not contribute significantly to the flow simulation and

make the simulation noisy. Table 7.7 clearly shows the reduction in the noise level

as Ra increases. Beyond a Ra of 0.1 there is no significant reduction in the noise.

These results suggest that despite an order of magnitude reduction in the number

of particles (and therefore computational time), there is a significant improvement

in the results.

Figs. 7.14 and 7.15 plot the smoothed (using a 15 point sliding-average) Cd

versus T curves as Ra is varied. As can be seen, the results improve when Ra is

increased. However increasing it by too much also introduces errors of its own.

This happens because as the distance is increased, the errors introduced in the

moment of the vorticity will increase. The load for the Ra = 0 case is only available

for around 6 seconds. This is because the number of particles is extremely large

at this time.

Figs. 7.16, 7.17 and 7.18 plot the vorticity field, ω, at T ≈ 5 for Ra = 0,

Ra = 0.0125 and Ra = 0.05 respectively. As can be seen, the Ra = 0 plot is very

noisy. The Ra = 0.05 is smooth but is not symmetric whereas Ra = 0.0125 looks
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Figure 7.14: Smoothed Cd versus T as Ra is varied between 0 to 0.025.

0 1 2 3 4 5 6 7 8 9 10
T

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

C
d

R
a
=0.05

R
a
=0.1

R
a
=0.2

R
a
=0.4

Figure 7.15: Smoothed Cd versus T as Ra is varied between 0.05 and 0.4.
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Figure 7.16: Vorticity contours at T ≈ 5 with Ra = 0.
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Figure 7.17: Vorticity contours at T ≈ 5 with Ra = 0.0125.
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Figure 7.18: Vorticity contours at T ≈ 5 with Ra = 0.05.

both smooth and symmetric. These results indicate that choosing an optimal Ra

influences the computation considerably. The value of Ra = 0.0125 reduces the

number of particles by a factor of 8 and produces far better results than the case

without any annihilation.

It is clear that the annihilation of vorticity inside the numerical layer im-

proves the quality and efficiency of the computation. It is of interest to study how

annihilation outside of the numerical layer influences the computation. This is

investigated subsequently. Merging of vortices of equal sign will not achieve the

same effect because it effectively increases γmax and thereby introduces noise. It

will also increase the errors in the solution.

The results shown above clearly demonstrate that RVM is capable of producing

high resolution results when a large number of particles are used and also when

the parameters are carefully chosen. It is also seen that annihilation significantly

improves the results in terms of quality and efficiency.
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7.6 Parametric study with scheme B

Scheme B is considered in this section and the effect of the variation of C and k1

are studied. There is no need to consider the variation of Ra and γmax since in

these cases, the value of C and k used in sections 7.5.3 and 7.5.4 can be easily

related to a corresponding C and k1 in scheme B. Similarly, for the case where

k1 is varied, it is possible to find the corresponding k1 values from the values of

k taken in section 7.5.2. If C is fixed as 0.4 and the values of N are taken from

Table 7.4, the appropriate value of k1 can be found as

k1 =

√
Re

πN
.

Table 7.8 shows the values of k1 corresponding to the values of k from Table 7.4.

In scheme B since N is not related to C (see equation (7.10)), once C is fixed,

∆t can be found directly from equation (7.7). Hence, the values of ∆t and hnum

are slightly different from those in Table 7.4. These differences are very little

and show-up only in the third or fourth decimal place. Therefore, the results of

section 7.5.2 are applicable here.

Table 7.8: Values of k1 for scheme B, given corresponding k values from scheme
A in Table 7.4.

k N k1

1.5 1062 0.016417
2.0 596 0.029253
3.0 266 0.065543
4.0 150 0.116230
5.0 96 0.181610
6.0 66 0.264160
7.0 50 0.348691
8.0 38 0.458804

7.6.1 Variation of C

To study the effect of variation of C, the case of k = 3 is considered. This results

in a value of k1 ≈ 0.065543, N = 266, and hnum = 0.0075188. This corresponds to
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the cases for which γmax and Ra were varied in sections 7.5.3 and 7.5.4. C values

are considered as shown in Table 7.9. The values of ∆t are chosen to match those

in Table 7.1. Ra is fixed at 0.25 and γmax at 0.05. Also shown are the error in

the drag coefficient as compared to KL and the noise level in the curve. As is

expected, the noise level increases as ∆t drops. The error is large for the largest

value of ∆t. However, there is no clear trend seen in the reduction of the error.

This is quite unlike scheme A where a bimodal behavior with a small reduction

was seen as ∆t was reduced. The results of table 7.9 indicate that the reason for

the reduction in the error in scheme A is due to the fact that the resolution has

changed. It also is clear that scheme B is a better approach to use since it is easy

to separate errors in spatial resolution as against errors in the time integration

of the vortex method. These results also show that reducing ∆t below a point is

meaningless and only produces more noisy loads.

Table 7.9: Values of ∆t and corresponding C value for scheme B. Also shown are
the error and noise level in the curve for Cd.

∆t C Error Noise Level
0.06 5.0802 0.14107 0.07831
0.04 3.2868 0.06455 0.09151
0.03 2.5401 0.08392 0.11773
0.02 1.6934 0.05498 0.17124
0.015 1.2701 0.09558 0.22069
0.01 0.8467 0.06405 0.31137
0.0075 0.6350 0.06853 0.41911
0.005 0.4233 0.07738 0.56824
0.00375 0.3175 0.07077 0.72401
0.0025 0.2117 0.07025 0.99874
0.001875 0.1588 0.06360 1.24475
0.00125 0.1058 0.06199 1.71327

7.7 Parametric study using ensemble averaging

The results obtained up to this point were based on single runs. Many of the

results were inconclusive as regards the error of the solution as compared to those

of KL. As mentioned in section 3.8, using an ensemble average of various trials is
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a much more reliable way to determine the optimal parameters. This is explored

in this section.

From the results of the previous sections it is clear that scheme B is a better

approach than scheme A. Reducing k or equivalently k1 improves the accuracy of

the simulation. Similarly, reducing γmax also improves accuracy. It has also been

seen that sheet annihilation improves the results while reducing computational

effort. Reducing ∆t beyond a point is not advantageous and produces increasingly

noisy results. In this section, ensemble averaging is used to further study the

variation of these parameters. Additionally, several other quantities are varied

and studied. These are listed below.

• Sheet1 or Sheet2 (as described in section 2.4) can be used. Thus far Sheet1
alone has been used.

• The vortex sheets can be created in three different ways as listed in sec-
tion 3.4.1. These are called sheet release style 1, 2 and 3.

• The collisions due to the convective displacements can be reflected across
solid surfaces as discussed in section 5.1. For larger ∆t values this is a must.
However, for small ∆t this may be unnecessary. Thus, it is of use to study
the effects of this.

• Annihilation can be performed for either or both the sheets and the blobs.

• Each sheet can induce a velocity of −γmax/2 on itself. This is to ensure that
the sheets velocity is similar to that of a blob at the same position. The
blob will be influenced by an image blob which contributes a velocity of this
amount near the wall. It is investigated if the self-induced sheet velocity is of
any significance. All computations up to this point of time do not compute
a self induced velocity.

• Sheet tagging can be enabled or disabled. Puckett (1989) shows that sheet
tagging does not produce any improved results for the vortex sheet method.

• Different integration schemes can be used. A first order Euler or second
order Runge-Kutta or fourth order Runge-Kutta method can be used.

• Strang type discretization can be used.

Clearly, these are a large number of variations. These necessitate a large

number of runs. To compare the results, the error, noise level and standard

deviation of the trials are used. These are computed as discussed in section 7.4.

First, the importance and advantage of ensemble averaging is discussed.
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7.7.1 Ensemble averaging

Consider the case where k1 = 0.065543 (or equivalently k = 3.0), with ∆t = 0.01

(C = 0.8467), N = 266, hnum = 0.0075188, γmax = 0.05 and Ra = 0.25. Sheet1

is used with sheet release style 1. No sheet self induced velocity is computed.

Only sheets are annihilated. Sheet tagging is performed. Second order integration

without Strang type discretization is used. In the following, different number of

trials per ensemble are considered and the error and standard deviation (σ) are

studied. The runs are made up to T = 10 and the standard deviation is computed

for the total time. The error is computed only up to T = 6 since the results of KL

are only available up to that time.

Table 7.10: The error, standard deviation and noise level for different number of
trial runs.

Trials Error σ Noise Level
1 0.08282 - 0.31683
2 0.06324 0.08055 0.21592
4 0.04726 0.06761 0.15204
8 0.04728 0.07300 0.10562
16 0.04088 0.07929 0.08415
24 0.03821 0.07994 0.06572

As shown in Table 7.10, the error decreases appreciably as the number of trials

in the ensemble increases. The noise level also decreases noticeably. The standard

deviation, σ is around 0.075 and does not change appreciably. This indicates that

despite a fairly large standard deviation (indicating a large amount of fluctuation

between runs), that the averaged results are quite close to the results of KL. This

is shown in Fig. 7.19 for the drag coefficient. The ensembled results for 8 and 24

trials are plotted as compared to the results of KL. The case with 8 trials is quite

close to the case using 24 trials. Thus, henceforth, unless specifically mentioned,

8 trials are used per ensemble. The parameters are studied carefully using the

ensemble averages.

166



0 1 2 3 4 5 6
T = Ut/R

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

C
d

8 Trials
24 Trials
Koumoutsakos & Leonard (1995)

Figure 7.19: Smoothed Cd versus non-dimensional time for different ensemble av-
erages as compared to Koumoutsakos and Leonard (1995).

7.7.2 Parametric study

Table 7.11 presents the various cases considered. The first case, case A, is identical

to the one used in the previous section, 7.7.1. The subsequent cases are presented

as modifications of this case. Therefore, case A2 is identical to case A with the only

difference that annihilation is performed for blobs in addition to sheets. Unless

otherwise mentioned, eight trials are made for each case. The standard deviation

is only computed up to T = 6. Nb is the number of blobs and Ns is the number

of sheets at T = 6, averaged over all the trial runs. In order to avoid problems

with the initial singularity in the curve, the noise level is computed after ignoring

the values up to T = 0.5. The merging radius used, Rm, is the same value as the

annihilation radius. The results for all the cases are presented in Table 7.12.

From the results in Table 7.12 it can be seen that annihilation of blobs and

sheets improves the results while reducing the number of particles (see results for

A, A2, A3 and B, B1, B2 and C, C1). This is the same conclusion as made earlier

in section 7.5.4. Computing the sheet self-induced velocity appears to reduce

the error without changing the standard deviation (see A5). Since the standard
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Table 7.11: Various combinations of parameters investigated.

Case Parameters varied
A Sheet1; sheet release style 1; no sheet self induced ve-

locity; annihilation: sheets; sheet tagging; second order
integration; no Strang discretization; no reflection dur-
ing convection; ∆t = 0.01, γmax = 0.05, k1 = 0.06554,
Ra = 0.25

A1 Reflection during convection
A2 Annihilation: sheets and blobs
A3 Annihilation: only blobs
A4 Sheet2
A5 Sheet self induced velocity
A6 Sheet release style 2
A7 Sheet release style 3
B Sheet release style 2; sheet self induced velocity; anni-

hilation: blobs and sheets; reflection during convection;
∆t = 0.01, γmax = 0.05, k1 = 0.06554, Ra = 0.25

B1 Ra = 0.01
B2 Ra = 0.05
C Sheet 2; sheet release style 2; sheet self induced velocity;

annihilation: blobs and sheets; reflection during convec-
tion; ∆t = 0.01, γmax = 0.05, k1 = 0.06554, Ra = 0.25

C1 annihilation: only sheets
C2 Ra = 0.05
C3 Ra = 0.05, ∆t = 0.005
C4 Ra = 0.05, γmax = 0.0125
C5 Ra = 0.05, k1 = 0.032772, ∆t = 0.005
C6 Ra = 0.1, k1 = 0.032772
C7 Ra = 0.1, k1 = 0.026416
C8 Sheet release style 3; Ra = 0.1, k1 = 0.026416
C9 Ra = 0.1, k1 = 0.021848
D Sheet 2; sheet release style 3; sheet self induced velocity;

annihilation: blobs and sheets; reflection during convec-
tion; ∆t = 0.01, γmax = 0.05, k1 = 0.06554, Ra = 0.25

D1 Ra = 0.1, k1 = 0.021848, ; 8 trials
D2 Ra = 0.1, k1 = 0.021848, γmax = 0.1; 16 trials
D3 Ra = 0.1, k1 = 0.021848, γmax = 0.2; 32 trials
D4 Ra = 0.1, k1 = 0.021848, γmax = 0.4; 64 trials
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Table 7.12: The error, standard deviation, noise level and number of parameters
for the different cases presented in Table 7.11.

Case Error σ Noise Level Nb Ns

A 0.04728 0.06499 0.10562 22154 1035
A1 0.03413 0.08142 0.11537 22039 1076
A2 0.03506 0.05190 0.11730 16066 990
A3 0.03437 0.05313 0.12074 15939 1726
A4 0.04513 0.06463 0.11101 21657 1024
A5 0.02841 0.06122 0.11443 21980 1039
A6 0.03929 0.06241 0.11789 22438 1055
A7 0.03418 0.05939 0.06279 27700 1399
B 0.02731 0.05385 0.11101 16042 1029
B1 0.06493 0.08898 0.16630 79556 9055
B2 0.05845 0.05671 0.12131 17952 1963
C 0.03907 0.05438 0.12567 16003 1037
C1 0.03871 0.06396 0.12569 21997 1025
C2 0.04845 0.06598 0.11415 17414 1497
C3 0.04241 0.06360 0.23511 16828 1385
C4 0.04793 0.04104 0.04403 65671 4252
C5 0.02972 0.04908 0.15831 37299 2225
C6 0.02722 0.04731 0.07649 34667 1424
C7 0.03525 0.03902 0.09289 43813 1693
C8 0.02708 0.03846 0.05710 53187 2540
C9 0.02562 0.03406 0.10894 57840 2053
D 0.04028 0.05573 0.06768 18392 1301
D1 0.02506 0.04580 0.07870 66379 2689
D2 0.03032 0.04958 0.08391 40760 2304
D3 0.01823 0.08110 0.09604 29002 2151
D4 0.05907 0.11087 0.13631 26204 1995
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deviation is unchanged, further study is necessary to confirm this. The variation

of ∆t is not too critical for the ranges considered (C, C3, C5, C6). It is clearly

seen (C2, C4) that reducing γmax reduces the standard deviation and the noise

level. However, the averaged error does not improve by much. This requires more

careful analysis. It is definitively seen from the cases C5, C6, C7, C8 and C9,

that reducing k1 consistently improves the results by reducing both the error and

the standard deviation, σ. Using sheet release style 2 improves the results slightly

and sheet release style 3 significantly lowers the noise level (C7, C8). Sheet2 has

no significant effect (see A, A4). Sheet2 is used in subsequent cases because the

velocity field due to Sheet2 is smoother than that of Sheet1.

The results for cases D, D1, D2, D3 and D4 clearly show that as γmax increases,

the standard deviation increases. However, the use of a large number of trials does

tend to give acceptable errors. This indicates that there are limits to how much

parallelization is possible with the method. Increased errors are seen because the

cell or mesh Reynolds number, Reh = γmaxλ/ν, increases with γmax. Ploumhans

and Winckelmans (2000) note that the mesh Reynolds number must be O(1). The

D4 case has Reh ≈ 5.

Using the results for the case D4 with 64 trials, the relationship between the

number of trials, the error, standard deviation and noise level is studied. The

results are shown in Table 7.13. The results and conclusions are similar to those

presented in Table 7.10. The results indicate that as the number of trials increases,

the error drops gradually but as would be expected, the standard deviation stays

fixed. The noise level does drop significantly.

Given the results of Table 7.12, further refinements are made to case C9 and

studied. Sheet 2 along with sheet release style 2 and the sheet self induced velocity

is used. Annihilation of blobs and sheets are performed and reflection is performed

during convection. The various parameters chosen are γmax = 0.05, Ra = 0.1,

k1 = 0.021848. The results for the variation of ∆t are shown in Table 7.14. A

slightly different method is used to generate the random seeds while using the

same random number generator. Consequently, the numbers for the case where

∆t = 0.01 are different from those of case C9.
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Table 7.13: The error, standard deviation and noise level for different number of
trial runs for case D4.

Trials Error σ Noise Level
1 0.16609 - 1.09676
2 0.17239 0.07829 0.71172
4 0.09922 0.11461 0.52690
8 0.07027 0.10710 0.35749
16 0.05676 0.11167 0.26736
32 0.06083 0.10629 0.20644
64 0.05907 0.11087 0.13631

Table 7.14: The error, standard deviation, noise level and number of parameters
for the variation of ∆t for case C9 in Table 7.11.

∆t Error σ Noise Level Nb Ns

0.0025 0.02894 0.03772 0.37818 53252 1879
0.0050 0.02072 0.04026 0.21215 55408 1967
0.0100 0.03103 0.03901 0.11545 58086 2081
0.0200 0.03607 0.04561 0.05523 60515 1988
0.0400 0.03863 0.04210 0.02952 63748 1616
0.0500 0.04680 0.04143 0.02436 65353 1479
0.1000 0.20359 0.13961 0.04041 114313 2690
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It is evident that the error does not drop by much once ∆t is lower than 0.02.

The standard deviation appears to be the same all the way up to ∆t = 0.05. At

this point it is possible that the discretization errors will make a difference and the

use of Strang type discretization might mitigate the errors. This is investigated

subsequently. The case where ∆t = 0.01 has C = 2.54. Therefore, it is clear

that values for C up to around 10 are acceptable without introducing much error.

Values higher than that will introduce large errors.

Table 7.15 presents the results for the variation of k1 for case C9 with all

other parameters fixed. It is easy to see that as k1 drops, the error and standard

deviation drops. The number of particles also increases more or less proportionally.

The second row considers the case where γmax = 0.0125 with k1 = 0.131087. As

expected, the standard deviation drops considerably but the error remains large.

Indicating that the error is due to a lack of spatial resolution.

k1 has the interesting feature that it is a fraction of the estimated maximum

boundary layer height. For a circular cylinder the maximum boundary layer height

is of the order of πR/
√

Re. Thus, if a value of k1=0.5 were to be chosen the

numerical layer height would equal the estimated maximum boundary layer height.

Thus, when k1 = 0.131087 the size of the numerical layer is more than 25% of

the maximum boundary layer height. This implies that the blobs are quite large.

Reducing k1 improves the spatial resolution and at 5-3% of the estimated boundary

layer height, excellent results are obtained.

Table 7.15: The error, standard deviation, noise level and number of parameters
for the variation of k1 for case C9 in Table 7.11.

k1 Error σ Noise Level Nb Ns

0.131087 0.07039 0.09107 0.18965 7982 961
γmax= 0.0125 0.08697 0.05942 0.07925 31275 3501
0.065543 0.04846 0.06834 0.12081 16484 1180
0.032772 0.02706 0.05740 0.10875 34300 1580
0.021848 0.03103 0.03901 0.11545 58086 2081
0.016386 0.02513 0.03750 0.11320 82026 2349

Table 7.16 presents the results for the variation of γmax. As is to be expected,

the number of particles increases in proportion to the reduction in γmax. The

172



error, standard deviation and noise levels reduce as γmax reduces. However, below

a point, it is clear that the returns are diminishing, requiring a reduction in k1

and possibly ∆t.

Table 7.16: The error, standard deviation, noise level and number of parameters
for the variation of γmax for case C9 in Table 7.11.

γmax Error σ Noise Level Nb Ns

0.0125 0.01582 0.01794 0.04382 205055 4910
0.0250 0.01974 0.02514 0.06675 106708 3002
0.0500 0.03103 0.03901 0.11545 58086 2081
0.1000 0.02344 0.06334 0.19241 34788 1744
0.2000 0.04150 0.10335 0.40570 25290 1603
0.4000 0.09681 0.12128 0.74118 24953 1341

Table 7.17 presents the results for the variation of Ra. Clearly, the annihilation

improves the results and beyond a point does not improve anything significantly.

However, it is important to note that even for very large values of Ra the error and

standard deviation are not large. Although the annihilation introduces an error

in the first moment of the vorticity it does more good than harm by reducing the

noise levels and errors due to a large number of oppositely signed but overlapping

particles. The reduction in the number of particles is an enormous benefit as

demonstrated in section 7.5.4.

Table 7.17: The error, standard deviation, noise level and number of parameters
for the variation of Ra for case C9 in Table 7.11.

Ra Error σ Noise Level Nb Ns

0.025 0.02985 0.06361 0.15188 157011 6710
0.050 0.03288 0.04564 0.12783 79712 3568
0.100 0.03103 0.03901 0.11545 58086 2081
0.150 0.02883 0.03674 0.10592 53693 1626
0.200 0.02586 0.03371 0.10250 52097 1369
0.250 0.02587 0.03188 0.09695 51165 1312
0.300 0.02341 0.02856 0.09888 50783 1216
0.400 0.02172 0.03751 0.10235 50442 1165
0.600 0.02174 0.03437 0.10248 49902 1205
0.800 0.03150 0.03399 0.10360 49460 1159
1.000 0.02138 0.03890 0.10464 49248 1238
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Given that the case C9 produces results that agree well with the results from

KL, other modifications are made to the case to study their influence on the errors.

This is similar to the study conducted in Tables 7.11 and 7.12. The results of this

study are presented in Table 7.18. Most of the results have the same order of error

and standard deviation. The results for the Strang type discretization are of con-

siderable interest since it suggests that a five fold increase in ∆t is possible without

any significant reduction in the error or standard deviation. Strang discretization

does increase the computational effort by about 25%. However, this is acceptable

since a 5 fold reduction in computational effort results by increasing ∆t. On the

other hand, Euler integration produces larger noise levels and uses a ∆t = 0.005

with slightly smaller standard deviation. The error in the solution is also much

worse. Runge-Kutta fourth order integration does not have an appreciable effect

indicating that a second order integration scheme is optimal in this case.

Table 7.18: The error, standard deviation, noise level and number of parameters
for the different perturbations on case C9 in Table 7.11. The term
RK4 refers to Runge-Kutta fourth order integration.

Parameters Error σ Noise Level Nb Ns

Strang; ∆t = 0.05 0.03017 0.03622 0.02176 71975 2109
Strang; ∆t = 0.01 0.02535 0.03633 0.11493 60994 2826
Strang; RK4; ∆t = 0.05 0.02458 0.04481 0.02629 71962 2276
Euler; ∆t = 0.005 0.04021 0.03160 0.20309 55263 2021
No sheet self velocity 0.03090 0.04578 0.10351 58212 2160
Sheet1; release style 1 0.03159 0.03931 0.09186 56026 1615
Sheet1; release style 2 0.02517 0.03870 0.11220 59851 2536
Sheet1; release style 3 0.02463 0.04274 0.09030 66959 3215
Sheet2; release style 1 0.03983 0.04367 0.07887 54362 1357
Sheet2; release style 3 0.01656 0.04117 0.07850 66162 2986
No sheet tagging 0.02730 0.04627 0.11096 58109 2053

In Table 7.19 a more serious study of Strang discretization is made. The

parameters listed are the differences with respect to the C9 configuration. It is

clear from the results that it is feasible to use a large ∆t such that C as specified

in equation (7.7) is as large as 10 (for ∆t = 0.05, C = 12.7). Thus it is possible

to obtain results of similar accuracy in almost a quarter of the time.

Based on the extensive study of the various parameters conducted above, the
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Table 7.19: The error, standard deviation, noise level and number of parameters
for combinations of parameters when using Strang discretization.

Parameters Error σ Noise Level Nb Ns

∆t = 0.05, γmax = 0.05 0.03017 0.03622 0.02176 71975 2109
∆t = 0.05, γmax = 0.025 0.02931 0.02276 0.01323 118951 3290
∆t = 0.05, γmax = 0.0125 0.02049 0.01818 0.01170 217447 5283
∆t = 0.10, γmax = 0.05 0.04081 0.04479 0.03223 76043 1878
∆t = 0.10, γmax = 0.025 0.04684 0.02438 0.03125 125595 2970
∆t = 0.10, γmax = 0.0125 0.04728 0.01463 0.02538 226330 4972

following general recommendations are made.

• Scheme B is a more flexible approach than scheme A.

• Ensemble averaging produces good results with non-optimal parameters. It
also allows for a trivial parallelization of the code. By computing the stan-
dard deviation for the trials, one can estimate the error bound of the com-
putations. From computations presented here it is clear that ensembles of
2 or 4 trials provide reasonable estimates for the deviation. The error also
reduces as the number of trials increases.

• Annihilation of both sheets and blobs of opposite sign is very important and
reduces the errors, standard deviation and the noise level. It also reduces
the number of particles and thereby makes the computation considerably
more efficient (sometimes by over an order of magnitude). Annihilation
does introduce an error in the moment of the vorticity. Therefore, a large
value of Ra will introduce inaccuracies. It is suggested that Ra be chosen so
that λRa <

√
2ν∆t. Where λ is the length of a vortex sheet.

• The use of a second order integration scheme is suggested since it allows for
a larger ∆t. It also introduces less noise in the solution than a first order
scheme.

• Strang discretization is recommended since it allows for larger ∆t with no
appreciable reduction in accuracy.

• ∆t can be chosen as given in equation (7.7) with the value of C ≤ 10.
The normally suggested choice is C ≤ 1. However, it appears that this
is unnecessary for the type of simulations performed here. Further, it is
recommended that the following condition be an upper limit for ∆t,

∆t <
λ

γmax

.

This condition ensures that the slowest sheet does not move by more than
a sheet length.
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• As γmax reduces, the noise, error and standard deviation reduce. However,
the number of particles increases with a reduced γmax. Thus it is worth
reducing this parameter as much as feasible. It is also important to note that
γmax should be chosen such that the cell Reynolds number, Reh = γmaxλ/ν,
be O(1) or less.

• k1 can be chosen such that the numerical layer height is less than 10% of an
estimated maximum boundary layer height. As k1 get smaller, the number
of particles increase almost in inverse proportion. In the present work it is
seen that values less than 0.025 produce very good results.

• Sheet2 produces smoother velocity fields and can be used instead of Sheet1.
However, it is to be noted that it does not appreciably improve the accuracy
or standard deviation of the results.

• Results indicate that sheet release style 3, where the boundary condition is
satisfied exactly, reduces noise the most at the cost of introducing a few more
particles. All of the sheet creation methods have similar characteristics. It
is noted that with sheet release style 3 it is imperative to merge sheets/blobs
having small strengths to reduce the number of particles.

• Adding a self induced velocity for the sheets has no appreciable effect.

• Performing sheet tagging also does not improve the results as mentioned by
Puckett (1989).

The recommendations for ∆t and γmax do not agree with those of Puckett

(1989). However, he only studied the boundary layer equations and compared his

results with those of the Blasius profile. The present work considers an unsteady

flow where the NS equations are valid with both vortex sheets and blobs. The

numerical layer height is also very small.

7.8 Study of the ERVM

In the previous section it was seen that ensemble averaging improves the accuracy

of the simulations. Based on this, a simple and new variance reduction technique

was proposed in section 3.9. In this section the ERVM is used and the results

obtained are studied.

Case C9 in Table 7.11 is considered with Ra = 0.25. The ERVM is used

with the number of processors, nproc = 6. The simulation produces a solution
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with an error of 0.01903 with σ = 0.01262 and the noise level at 0.11604. The

standard deviation has reduced by almost a factor of three as compared to the

results without the new method. This value is also less than that produced by

the case where γmax = 0.0125 (Table 7.16). The error itself is close to those of the

cases where γmax = 0.025, 0.0125. In this particular case none of the vorticity was

removed based on the magnitude of its strength. The total run time was about

1.5 times that of the case where the original RVM scheme is used. Removing the

vortex particles having circulation below a threshold value makes the computations

almost as efficient as the original RVM.

Table 7.20 presents the results for the case where nsync is varied with the

number of processors, nproc = 6. Ra = Rm = 0.6. Sheet2 is used along with release

style 3. Strang discretization is used with ∆t = 0.05 and γmax = 0.05. Except for

Ra, the parameters are similar to those used for Table 7.19. The results clearly

show that the new method reduces the error and standard deviation. It is noted

that in these tables, the average number of particles for the entire simulation (in

the ensemble) are shown and not the number at the end of T = 6. This number is

computed by the sum of the number of particles at each time step divided by the

total number of time steps. This approach is used because each synchronization

results in a sudden jump in the number of particles in each processor. Thus the

average number of particles is a better indicator to use.

In Table 7.20, as nsync reduces the error increases. This can be explained if one

considers the viscous diffusion length scale and compares it with the merge/anni-

hilation radius. Consider the value of lr =
√

2ν∆tnsync/(Raλ). When nsync = 2,

lr = 2.44 and increases to 7.73 when nsync = 20. Clearly, if nsync is small, the

merge length scale is close to the diffusion length scale, thus the effect of merging

negates the effect of the increased number of samples. Thus, it is recommended

that nsync not be chosen too small. If smaller nsync values are desirable, Rm and

Ra should be reduced. However, reducing Ra and Rm too much is also not a good

idea since this usually results in a very large increase in the number of particles. It

is therefore a good idea to choose a reasonable Rm and Ra and then choose nsync

such lr is at least above 5.
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Table 7.20: The error, standard deviation, noise level and average number of par-
ticles for different values of nsync with nproc fixed at 6.

nsync Error σ Noise Level Average Nb Average Ns

2 0.02208 0.01289 0.01242 53591 1980
5 0.01801 0.01127 0.01737 50048 1935
10 0.01800 0.01308 0.01667 47966 1887
20 0.01361 0.01222 0.01802 46808 1831

In Table 7.21 the results for the variation of nproc is shown as nsync is held fixed

at 5. All the other parameters are the same as used for Table 7.20. As is clearly

demonstrated, increasing the number of processors considerably reduces the error,

standard deviation and noise level. The convergence of the results indicates that

when 16 processors are used the errors are due to other sources. ∆t can be reduced

and so can γmax. ∆t in this case is very large since C ≈ 12. However, the results

presented here clearly indicate that the new method produces very accurate results

with little computational overhead. It is of importance to carefully analyze and

understand the new method. This is beyond the scope of the present work and

will be investigated in future.

Table 7.21: The error, standard deviation, noise level and average number of par-
ticles for different values of nproc with nsync fixed at 5.

nproc Error σ Noise Level Average Nb Average Ns

2 0.05810 0.01788 0.02769 46025 1848
4 0.03215 0.01365 0.01864 48382 1891
8 0.01486 0.00891 0.01406 50225 1905
16 0.01330 0.00927 0.01213 50269 1902

7.9 Summary

The chapter first described the computational algorithm. The key parameters in-

volved were listed. Two schemes, scheme A and scheme B, to tie the parameters to

each other were discussed. The impulsively started flow past a circular cylinder at

Re = 3000 was considered as the benchmark problem. The parameters discussed
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were systematically varied and their effects on the results were studied. The error

in the solution was found by comparing the drag history with the high-resolution

results of Koumoutsakos and Leonard (1995). This error was used to compare

the results of the parameter variation. Scheme B was found to be more flexible

and better than scheme A. Ensemble averaging was used to further refine the pa-

rameter range. The ensemble averaging reduced both the error and noise levels.

Various parameters were changed and systematically studied. Over 500 different

individual runs were made in the process with around 50 different cases studied.

Based on this study, several recommendations for the choice of optimal parameters

were suggested. Finally, the new method for variance reduction was proposed and

studied. For the same parameters, the method considerably reduces the error and

standard deviation without incurring a significant computational cost. When used

carefully, the method produces excellent results that are comparable to the results

of Koumoutsakos and Leonard (1995). In the next chapter the RVM is applied to

the flow past an impulsively started cylinder at various Reynolds numbers. The

results and recommendations of the present chapter are used in the study.
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CHAPTER 8

RESULTS AND DISCUSSION

In the previous chapter, the numerical parameters used in the RVM were described

in detail. The impulsively started flow past a circular cylinder at Re = 3000

was considered as a benchmark problem. The computational parameters were

varied systematically. Several recommendations were made regarding the optimal

choice of parameters. In this chapter, the impulsively started flow past a circular

cylinder in the Reynolds number range 40–9500 is studied in considerable detail.

The results are compared with available data from other computations employing

vortex methods.

8.1 Flow past a circular cylinder
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Figure 8.1: Impulsively started flow past a circular cylinder.

The problem considered involves a circular cylinder of radius R, placed in an

infinite mass of initially stationary fluid. This is illustrated in Fig. 8.1. At t = 0+

the body (or alternatively the fluid) is imparted a constant velocity, U . A non-

dimensional time, T is defined as T = Ut/R. The computations aim to simulate

the initial transients of this flow with high-resolution. The problem is challenging

and of interest for the following reasons.

• In the vortex methods community, this is considered to be a standard bench-
mark problem for the NS equations. Several researchers (Cheer, 1983, 1989;



Smith and Stansby, 1988; Koumoutsakos and Leonard, 1995; Shankar, 1996;
Shankar and van Dommelen, 1996a; Shiels, 1998; Ploumhans and Winckel-
mans, 2000) have studied the problem extensively.

• Capturing all the features of the flow involves considerable effort. Therefore,
the problem is a good test for the code developed in the present work.

• The only significant comparisons of the results of the RVM with that of a de-
terministic diffusion scheme are by Koumoutsakos and Leonard (1995) and
Shankar (1996). Koumoutsakos and Leonard (1995) employ the PSE (De-
gond and Mas-Gallic, 1989) technique and compare some of their results with
those of Smith and Stansby (1988) and find the agreement to be very poor.
The comparisons made by Shankar (1996) with the vorticity redistribution
technique put the RVM in better light. However, there were significant dif-
ferences between the results of the VRT and the RVM. Therefore, it is of
interest to see if the RVM can compete with the deterministic methods.

For the present computations, various diagnostic quantities are computed as

outlined in appendix B. Several of these diagnostic quantities are computed and

presented in literature. Perhaps the most systematic study, with a large number

of diagnostic quantities is available in the work of Koumoutsakos and Leonard

(1995). They plot the drag force history, the pressure and friction drag histories,

vorticity contours, streamlines, body vorticity, vorticity flux and the rate of circu-

lation production. All of these quantities are computed in the present work and

compared with the available results of other researchers. Shankar (1996) also plots

the velocity distribution in the wake of the cylinder. This is also computed and

compared. Thus, it is possible to make a comprehensive comparison of a modern

implementation of the RVM with a vortex method using a deterministic diffusion

scheme.

8.1.1 Re = 40

The computational parameters chosen for this case are, ∆t = 0.05 (C ≈ 1.27),

k1 ≈ 0.025, γmax = 0.00625 and Ra = Rm = 0.25. The body is discretized into

80 panels and viscous boxes. Second order Runge-Kutta integration is used along

with Strang discretization. Sheet2 with a release style of 3 (section 3.4.1) is used.

Both blobs and sheets are annihilated and merged. Eight independent trials are

made and the ensemble of these is considered. At the end of T = 15 there are
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Figure 8.2: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 40. Solid line is the total drag force. Symbols correspond to the
results of Koumoutsakos and Leonard (1995).

around 57000 blobs and 900 sheets in the flow. A single trial takes 52 minutes to

execute on a Pentium-IV 1.7Ghz machine. A larger ∆t could be chosen since C

is small. However, this would increase the viscous splitting error due to the high

viscosity.

Fig. 8.2 plots the drag coefficient for the total, pressure and frictional forces.

The curves represent the present simulations and the symbols represent those

of Koumoutsakos and Leonard (1995). The total force is computed using the

hydrodynamic impulse. The pressure and friction forces are computed using the

approach described in section B.1.3. The curves are smoothed using a 7 point

sliding average. Apart from small differences in the total and pressure forces at

small times, the agreement is good.

Fig. 8.3 shows the variation of the body vorticity versus the angle measured

from the trailing stagnation point of the cylinder and traversing in an anti-clockwise

sense. The lines correspond to the results of the present work and the symbols

to those of Koumoutsakos and Leonard (1995). The data is smoothed using a 7

point sliding average.
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Figure 8.3: Body vorticity for impulsively translated cylinder at Re = 40. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.4: Vorticity flux for impulsively translated cylinder at Re = 40. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.5: Rate of circulation production from the lower half of the cylinder ver-
sus T for impulsively translated cylinder at Re = 40. Symbols corre-
spond to the results of Koumoutsakos and Leonard (1995).

Fig. 8.4 shows the variation of the vorticity flux versus the angle measured from

the rear stagnation point of the cylinder and traversing in an anti-clockwise sense.

The values plotted in Koumoutsakos and Leonard (1995) are dimensional and the

viscosity, diameter of the cylinder and other values chosen for the computations

are not mentioned. In order to compare the present results with theirs the value

of ν/D is guessed based on curves presented by them. The guess that seems to fit

the data best is that of ν/D = 10−4m/s. Therefore this value is used consistently

when comparing the vorticity flux values given by Koumoutsakos and Leonard

(1995).

The overall agreement of the results is good. However, there are some discrep-

ancies in the results for the T = 1, 2 cases at the peaks. The overall agreement is

quite remarkable considering that the RVM works best for high Reynolds number

flows.

Fig. 8.5 plots the rate of circulation production, dΓ
dt

, from the lower half of the

cylinder versus T . The values obtained by Koumoutsakos and Leonard (1995)

are also shown. Their values are dimensional and as done for the vorticity flux
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Figure 8.6: Iso-vorticity contours for an impulsively translated cylinder at Re =
40.
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plots, their values are scaled assuming that ν/D = 10−4m/s. The agreement in

the values is reasonable.

Fig. 8.6 plots the iso-vorticity contours at various times. The vorticity is trans-

ferred to a regular grid with spacing, h = 0.04. Noise is reduced by performing a

Laplace smoothing operation three times.

8.1.2 Re = 550

The computational parameters chosen for this case are, ∆t = 0.05 (C = 4.77),

k1 ≈ 0.025, γmax = 0.00625 and Ra = Rm = 0.25. The body is discretized into

300 panels and viscous boxes. Second order Runge-Kutta integration is used along

with Strang discretization. Sheet2 with a release style of 3 (section 3.4.1) is used.

Both blobs and sheets are annihilated and merged. Eight trials are made and the

ensemble of these is considered. At the end of T = 7 there are around 150000

blobs and 4000 sheets in the flow. A single trial takes 75 minutes to execute on a

Pentium-IV 1.7Ghz machine. On an eight machine cluster the 8 trials essentially

take a total time of around 75 minutes.

Fig. 8.7 plots the drag coefficient, Cd, versus non-dimensional time, T . The

solid line corresponds to the results from the present work. The curve is obtained

using a piecewise 6th order polynomial fit of the data with 23 points per piece-

wise polynomial. The symbols correspond to the results from Koumoutsakos and

Leonard (1995), Shankar (1996) and Ploumhans and Winckelmans (2000). The

figure clearly shows that the present results agree well with those of Shankar (1996)

and Ploumhans and Winckelmans (2000). There is a small discrepancy between

the present results and those of Koumoutsakos and Leonard (1995).

It is to be noted that there is very little noise in the results and a simple five

point sliding average for the curves would also produce smooth results. The noise

level in the curves is computed using the equation (B.5). The noise level is found

to be 0.00772 and the standard deviation, σ, of the trials is 0.01153. The same case

was also run with a value of γmax = 0.0125 and the results were almost identical

(σ = 0.01396, noise level 0.01). For this case, the number of particles was close
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Figure 8.7: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 550. Solid line is the present solution using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995),
Shankar (1996) and Ploumhans and Winckelmans (2000).
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Figure 8.8: Pressure and friction drag versus T for impulsively translated cylin-
der at Re = 550. Solid line: pressure drag, dashed line: friction
drag. Symbols correspond to the results of Koumoutsakos and Leonard
(1995).

188



1 1.5 2 2.5 3 3.5 4
x

-1

-0.5

0

0.5

1

1.5

u

Shankar Subramaniam (1996)

T=1, 2, 3, 4 & 5

Figure 8.9: Radial velocity along the axis of symmetry on the rear side of an
impulsively translated cylinder at Re = 550. Solid line is the present
solution using the RVM. Symbols correspond to the results of Shankar
(1996).

to half of the γmax = 0.00625 case and the run time was also halved at around 39

minutes.

Fig. 8.8 plots the variation of the pressure and friction drag versus T . The

symbols correspond to the results of Koumoutsakos and Leonard (1995). No

smoothing of the data is done for the plots. As seen, the agreement is very good

except for the slight discrepancy in the pressure load. This discrepancy is similar

to the one seen in Fig. 8.7.

Fig. 8.9 plots the variation of the radial velocity along the axis of symmetry

on the rear side of the cylinder. The symbols correspond to the results of Shankar

(1996). The agreement is almost total. In the RVM, the velocity field obtained is

fairly smooth. Therefore, this agreement with the results of Shankar (1996) is not

surprising.

Fig. 8.10 shows the variation of the body vorticity versus the angle measured

from the rear stagnation point of the cylinder and traversing in an anti-clockwise

sense. The lines correspond to the results of the present work and the symbols
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Figure 8.10: Body vorticity for impulsively translated cylinder at Re = 550. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.11: Vorticity flux for translated cylinder at Re = 550. Solid and dashed
lines are the present solutions using the RVM. Symbols correspond
to the results of Koumoutsakos and Leonard (1995).
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Figure 8.12: Rate of circulation production from the lower half of the cylinder
versus T for impulsively translated cylinder at Re = 550. Symbols
correspond to the results of Koumoutsakos and Leonard (1995) and
Ploumhans and Winckelmans (2000).

to that of Koumoutsakos and Leonard (1995). The data is smoothed using a 11

point sliding average. Fig. 8.11 shows the variation of the vorticity flux versus the

angle. This data is also smoothed using a 11 point sliding average.

Fig. 8.12 plots the rate of circulation production from the lower half of the

cylinder versus T . The values obtained by Koumoutsakos and Leonard (1995)

and Ploumhans and Winckelmans (2000) are also shown. The agreement is very

good with the present values being in-between those of the other computations.

Fig. 8.13 plots the iso-vorticity contours at various times. The vorticity is

transferred to a regular grid with spacing, h ≈ 0.015. The data is smoothed once

using a Laplace smoothing operation. Although not shown here, these results also

match well with available plots of the vorticity contours using different diffusion

schemes.

Fig. 8.14 plots the streamlines for the flow. The range of x is [−1.5, 3.0] and

the range of y is [−1.4, 1.4]. The values of the streamfunction contours are, 0 , ± {
0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
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Figure 8.13: Iso-vorticity contours for an impulsively translated cylinder at Re =
550.
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Figure 8.14: Streamlines for an impulsively translated cylinder at Re = 550.

194



0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15}.
These results also agree well with available results from other computations.

8.1.3 Re = 1000

The computational parameters chosen for this case are, ∆t = 0.05 (C = 6.37),

k1 ≈ 0.025, γmax = 0.0125 and Ra = Rm = 0.25. The body is discretized into 400

panels and viscous boxes. Second order Runge-Kutta integration is used along

with Strang discretization. Sheet2 with a release style of 3 is used. Both blobs

and sheets are annihilated and merged. Eight trials are made and the ensemble

of these is considered. At T = 6, there are around 100000 vortex blobs and 3000

vortex sheets. A single trial takes 44 minutes to execute on a Pentium-IV 1.7Ghz

machine.
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Figure 8.15: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 1000. Solid line is the present solution using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995) and
Smith and Stansby (1988, 1989).

Fig. 8.15 plots the drag coefficient, Cd versus non-dimensional time, T . The

solid line corresponds to the results from the present work. The curve is obtained

using a piecewise 6th order polynomial fit of the data with 23 points per piece.
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The circular symbols correspond to the results from Koumoutsakos and Leonard

(1995) and the square and diamond symbols to the results of Smith and Stansby

(1988, 1989). Shankar (1996) does not present results for this Reynolds number.

The figure clearly shows that the present results agree very well with those of

Koumoutsakos and Leonard (1995). It is clear that the results of Smith and

Stansby (1988, 1989) do not agree well with the present results. They also use the

RVM for their computations. The poor agreement suggests that too few particles

were used by them to resolve the features of the flow. It is also clearly seen that the

results of Smith and Stansby (1989) are better than those of Smith and Stansby

(1988). In their paper, Koumoutsakos and Leonard (1995) compare their results

with those of Smith and Stansby (1988) and conclude that the poor agreement is

due to the RVM. However, it is clear from the results of the present work that

this is simply not the case and that it is possible to obtain excellent results with

the RVM.

Like the Re = 550 case, there is very little noise in the results and a simple

five point sliding average for the load curve would also produce excellent results.

The noise level in the curves is 0.00651 and the standard deviation, σ, between

trials is 0.01260.

Fig. 8.16 plots the variation of the pressure and frictional drag versus T . The

symbols correspond to the results of Koumoutsakos and Leonard (1995). A seven

point average was used to smooth the slight oscillations in the curve. As seen, the

agreement is very good except for the slight discrepancy in the pressure load at

initial times.

Fig. 8.17 shows the variation of the body vorticity versus the angle measured

from the rear stagnation point of the cylinder and traversing in an anti-clockwise

direction. Fig. 8.18 shows the variation of the vorticity flux on the body versus the

angle. The lines correspond to the results of the present work and the symbols to

that of Koumoutsakos and Leonard (1995). The data is smoothed using a 11 point

sliding average. The body vorticity curves are in excellent agreement while the

peaks for the flux curves are lower. The smaller peaks arise due to the smoothing.

Without the smoothing the curves are noisy. However, the overall agreement is
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Figure 8.16: Pressure and friction drag versus T for impulsively translated cylinder
at Re = 1000. Solid line is the present solution using the RVM.
Symbols correspond to the results of Koumoutsakos and Leonard
(1995).

good.

Fig. 8.19 plots the rate of circulation production from the lower half of the

cylinder versus T . The values obtained by Koumoutsakos and Leonard (1995) are

also shown. The agreement is good and there is a 5% difference in the peak value.

Given the discrepancy between the results of Koumoutsakos and Leonard (1995)

and Ploumhans and Winckelmans (2000) for the Re = 550 case, this appears quite

acceptable.

Fig. 8.20 plots the iso-vorticity contours at various times. The vorticity is

transferred to a regular grid with spacing, h ≈ 0.015. The data is smoothed once

using a Laplace smoothing operation.

Fig. 8.21 plots the streamlines for the flow at times of T = 1, 2, 3, 4, 5 and 6.

The range of x and y and the contours considered are the same as chosen for the

Re = 550 case.
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Figure 8.17: Body vorticity for impulsively translated cylinder at Re = 1000.
Solid and dashed lines are the present solutions using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.18: Vorticity flux for impulsively translated cylinder at Re = 1000. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.19: Rate of circulation production from the lower half of the cylinder
versus T for impulsively translated cylinder at Re = 1000. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).

8.1.4 Re = 3000

The computational parameters chosen for this case are, ∆t = 0.025 (C = 6.35),

k1 ≈ 0.022, γmax = 0.025 and Ra = 0.6. The body is discretized into 266 panels

with 798 (= 266×3) viscous boxes. Second order Runge-Kutta integration is used

along with Strang discretization. Sheet2 with a release style of 3 is used. Both

blobs and sheets are annihilated and merged. Eight trials are made in parallel

using the ERVM. The ensembling occurs every 10 iterations (nsync = 10) in the

manner described in section 3.9. The ensemble of these runs is considered for the

comparison. At T = 6.25, an average1 of around 90000 vortex blobs and 3500

sheets are used in the simulation. The entire run takes 224 minutes on a cluster

of eight Pentium-IV class machines.

Fig. 8.22 plots the drag coefficient, Cd versus non-dimensional time, T . The

solid line corresponds to the results from the present work. The curve is obtained

using a piecewise 6th order polynomial fit of the data with 45 points per piece-

wise polynomial. The symbols correspond to the results from Koumoutsakos and

1Averaged over each simulation starting from T = 0 and then averaged over the trials.
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Figure 8.20: Iso-vorticity contours for an impulsively translated cylinder at Re =
1000.
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Figure 8.21: Streamlines for an impulsively translated cylinder at Re = 1000.
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Figure 8.22: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 3000. Solid line is the present solution using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995);
Shankar (1996); Ploumhans and Winckelmans (2000).
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Figure 8.23: Pressure and friction drag versus T for impulsively translated cylinder
at Re = 3000. Solid line is the present solution using the RVM.
Symbols correspond to the results of Koumoutsakos and Leonard
(1995).
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Figure 8.24: Radial velocity along the axis of symmetry on the rear side of an
impulsively translated cylinder at Re = 3000. Solid line is the present
solution using the RVM. Symbols correspond to the results of Shankar
(1996).

Leonard (1995), Shankar (1996) and Ploumhans and Winckelmans (2000). The

figure clearly shows that the present results agree well with those of the determin-

istic diffusion scheme results. The noise level in the load curve is 0.02428 and the

standard deviation, σ = 0.01092.

Fig. 8.23 plots the pressure and friction drag versus T . The solid curve rep-

resents results from the present computations and the symbols correspond to the

results of Koumoutsakos and Leonard (1995). An eleven point sliding average is

used to smooth the oscillations in the curve for the pressure drag. As seen, the

agreement is excellent.

Fig. 8.24 plots the variation of the radial velocity along the axis of symmetry

on the rear side of the cylinder. The symbols correspond to the results of Shankar

(1996). The agreement is good.

Fig. 8.25 shows the variation of the body vorticity versus the angle measured

from the rear stagnation point of the cylinder and traversing in an anti-clockwise

sense.
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Figure 8.25: Body vorticity for impulsively translated cylinder at Re = 3000.
Solid and dashed lines are the present solutions using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.26: Vorticity flux for impulsively translated cylinder at Re = 3000. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.27: Rate of circulation production from the lower half of the cylinder
versus T for impulsively translated cylinder at Re = 3000. Symbols
correspond to the results of Koumoutsakos and Leonard (1995) and
Ploumhans and Winckelmans (2000).

Fig. 8.26 shows the variation of the vorticity flux versus the angle. The lines

correspond to the results of the present work and the symbols to that of Koumout-

sakos and Leonard (1995). The data is smoothed using a 15 point sliding average.

The body vorticity curves are in excellent agreement while the peaks for the flux

curves computed using the RVM are lower. Once again, the results are in very

good overall agreement.

Fig. 8.27 plots the rate of circulation production from the lower half of the

cylinder versus T . The values obtained by Koumoutsakos and Leonard (1995)

and Ploumhans and Winckelmans (2000) are also shown. The agreement is clearly

very good.

Fig. 8.28 plots the iso-vorticity contours at various times. The vorticity is

transferred to a regular grid with spacing, h ≈ 0.01. The data is smoothed twice

using a Laplace smoothing operation.

Fig. 8.29 plots the streamlines for the flow at times of T = 1, 2, 3, 4, 5, 6. The

range of x and y and the contours considered are the same as chosen for the
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Figure 8.28: Iso-vorticity contours for an impulsively translated cylinder at Re =
3000.
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Figure 8.29: Streamlines for an impulsively translated cylinder at Re = 3000.
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Re = 550 and Re = 1000 cases.

8.1.5 Re = 9500

The computational parameters chosen for this case are, ∆t = 0.0125 (C = 4.94),

k1 ≈ 0.025, γmax = 0.025, Ra = 0.15 and Rm = 0.3. The body is discretized

into 620 panels with 1240 (= 620 × 2) viscous boxes. Second order Runge-Kutta

integration is used along with Strang discretization. Sheet2 with a release style

of 3 is used. Both blobs and sheets are annihilated and merged. Eight trials are

made in parallel using the ERVM. The ensembling is done every 40 iterations

(nsync = 40) in the manner described in section 3.9. The ensemble of these runs

is considered for the results. At T = 6.0, 203500 vortex blobs and 6100 sheets are

present. An average of 148000 vortex blobs and 8100 sheets have used been during

the entire course of the simulation. The entire run takes around 480 minutes (8

hours) to execute on a cluster of eight Pentium-IV class machines.
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Figure 8.30: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 9500. Solid line is the present solution using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995);
Shankar (1996).

It is important to note that obtaining a symmetric flow at this Reynolds num-
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Figure 8.31: Pressure and friction drag versus T for impulsively translated cylinder
at Re = 9500. Solid line and dashed lines correspond to the solution
using the RVM. Symbols correspond to the results of Koumoutsakos
and Leonard (1995).

ber proved very challenging. The inherently noisy nature of the RVM coupled

with the unstable nature of the flow at this Reynolds number makes it difficult to

obtain symmetric results beyond T = 3. A fair amount of fine tuning of parame-

ters was necessary. Most of the cases produced reasonable results up to a time of

T ≈ 3. However, it proved difficult to obtain symmetric results beyond this time.

A more serious discussion on the issue is provided in section 8.2.

Fig. 8.30 plots the drag coefficient, Cd versus non-dimensional time, T . The

solid line corresponds to the results from the present work. The curve is smoothed

using a 7 point sliding average. The symbols correspond to the results from

Koumoutsakos and Leonard (1995) and Shankar (1996). The figure clearly shows

that the present results agree well with those of the deterministic diffusion scheme

results. The noise level in the load curve is 0.02222 and the standard deviation,

σ = 0.00639 (this is computed using a 6th order piecewise polynomial with 23

points per piecewise polynomial).

Fig. 8.31 plots the pressure and friction drag versus T . The solid curve rep-

resents results from the present computations and the symbols correspond to the
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Figure 8.32: Radial velocity along the axis of symmetry on the rear side of an
impulsively translated cylinder at Re = 9500. Solid line is the present
solution using the RVM. Symbols correspond to the results of Shankar
(1996).

results of Koumoutsakos and Leonard (1995). A seven point sliding average is

used to smooth the oscillations in the curve for the pressure drag. As seen, the

agreement is good.

Fig. 8.32 plots the variation of the radial velocity along the axis of symmetry

at the rear of the cylinder. The symbols correspond to the results of Shankar

(1996). The agreement is excellent.

Fig. 8.33 plots the variation of the tangential component of the velocity along

radial lines at different angles, θ, measured clockwise from the front symmetry

line. The symbols correspond to the results from Shankar (1996). The velocity is

computed as the ensemble average of all the 8 trials. The agreement between the

computations is very good.

Fig. 8.34 shows the variation of the body vorticity versus the angle measured

from the rear stagnation point of the cylinder and traversing in an anti-clockwise

sense. Fig. 8.35 shows the variation of the vorticity flux versus the angle. The

lines correspond to the results of the present work and the symbols to that of
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Figure 8.33: Tangential velocity component along radial lines at different angles
for an impulsively translated cylinder at Re = 9500. Solid line is the
present solution using the RVM. Symbols correspond to the results
of Shankar (1996).
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Figure 8.34: Body vorticity for impulsively translated cylinder at Re = 9500.
Solid and dashed lines are the present solutions using the RVM. Sym-
bols correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.35: Vorticity flux for impulsively translated cylinder at Re = 9500. Solid
and dashed lines are the present solutions using the RVM. Symbols
correspond to the results of Koumoutsakos and Leonard (1995).
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Figure 8.36: Rate of circulation production from the lower half of the cylinder
versus T for impulsively translated cylinder at Re = 9500. Symbols
correspond to the results of Koumoutsakos and Leonard (1995) and
Ploumhans and Winckelmans (2000).

Koumoutsakos and Leonard (1995). The data is smoothed using a 15 point sliding

average. The body vorticity curves are in excellent agreement while the peaks for

the flux curves are lower. The overall agreement is very good.

Fig. 8.36 plots the rate of circulation production from the lower half of the

cylinder versus T . The curve is smoothed using a 5 point sliding average. The

values obtained by Koumoutsakos and Leonard (1995) are also shown. The agree-

ment is very good up to about T = 4.25 beyond which there is some discrepancy

due to the difficulty in maintaining symmetry in the present computations.

Fig. 8.37 plots the iso-vorticity contours at various times. The vorticity is

transferred to a regular grid with spacing, h = 0.01. The data is smoothed once

using a Laplace smoothing operation.

Fig. 8.38 plots the streamlines for the flow at times of T = 1, 2, 3, 4, 5, 6. The

range of x is [−0.75, 1.75] and y is [−1.05, 1.05]. The contour levels chosen are

the same values as specified by Shankar (1996): 0 , ± { 0.001, 0.003, 0.005, 0.007,

0.01, 0.015, 0.027, 0.04, 0.06, 0.08, 0.1, 0.125, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.35,
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Figure 8.37: Iso-vorticity contours for an impulsively translated cylinder at Re =
9500.
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Figure 8.37: (contd.): Iso-vorticity contours for an impulsively translated cylin-
der at Re = 9500.
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Figure 8.38: Streamlines for an impulsively translated cylinder at Re = 9500.
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0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}.

8.2 Discussion

In this work an efficient implementation of the random vortex has been provided

and studied. Chorin’s blob (Chorin and Bernard, 1973; Chorin, 1973) along with

vortex sheets (Sheet2, section 2.4) in the numerical layer are used to discretize

the vorticity. A second order Runge-Kutta scheme is used to integrate the ODEs

for particle motion. A fast multipole method is used to accelerate the velocity

computations. An accelerated panel method is used to satisfy the no-penetration

boundary condition. Strang discretization (Beale and Majda, 1981) is used for

operator splitting. The random vortex method is used to simulate diffusion. Par-

ticles are specularly reflected when they strike a solid surface. Annihilation and

merging are performed to reduce the number of particles. Based on extensive

numerical experimentation several recommendations were suggested in chapter 7.

These recommendations are used to choose the parameters. A new and simple

variance reduction scheme is used to reduce the noise levels and improve results

significantly (section 7.8).

The following are important points to note.

1. The Chorin blob is used in the present work. This is a second order blob that
is used frequently in random vortex simulations. However, most researchers
using deterministic diffusion schemes seem to use the Gaussian blob.

2. Sheet2 as defined in section 2.4 does not satisfy the mass conservation equa-
tion since it induces no vertical velocity field in its region of influence. It
is also questionable to use the vortex sheet method for the class of flows
considered here since it assumes that the Prandtl boundary layer equations
are valid. However, this error is a higher order one and only influences the
numerical layer which is an extremely small region of the flow.

3. For the simulation of the Euler equations using vortex methods, it is
known (Beale and Majda, 1985; Perlman, 1985; Nordmark, 1991) that accu-
racy and higher order convergence demand that the blob core-radii overlap.
The present work does not use any special technique to ensure overlap.

4. The no-slip boundary condition is satisfied by introducing vortex sheets on
the surface. While physically appealing, this method is considered to be
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a simple approach as compared to that proposed by Koumoutsakos et al.
(1994). Koumoutsakos and Leonard (1995) claim that the superiority of
their results for lower Reynolds numbers is, among other things, also due to
their sophisticated scheme to satisfy this boundary condition.

5. The random walk method has been used to simulate diffusion. This method
is known to have a low rate of convergence (Roberts, 1985). The method
also tends to produce noisy results due to its stochastic nature. It is also
believed to require a large number of particles to produce high-quality re-
sults. With the advent of deterministic diffusion schemes, the RVM has been
largely ignored for high-resolution simulations. It is only considered suitable
for low-resolution, engineering approximations. Further, the poor agree-
ment between the results of Koumoutsakos and Leonard (1995) and Smith
and Stansby (1988) seem to validate these general conclusions. This moti-
vates Koumoutsakos and Leonard (1995) to mention that the poor agree-
ment is likely due to the slow convergence rates for the RVM and the simple
means used to satisfy the no-slip boundary condition. With the exception
of Shankar (1996) who notes that the RVM is capable of good results when
a large number of particles are used, it is generally believed that the RVM
is unsuitable for high-resolution computations.

In section 8.1, the results obtained for the flow past an impulsively started

cylinder using the code developed were presented. The results were systemati-

cally compared with high-resolution results obtained by other researchers using

deterministic diffusion schemes. The comparison is quite exhaustive with all well

known quantities compared for a fairly wide range of Reynolds numbers. The

agreement obtained is generally very good in almost all cases. This definitively

indicates that the RVM can be used to perform high-resolution simulations. The

present work therefore raises a few interesting issues and questions.

It appears safe to assume that the use of the Chorin blob is justified. Further

experimentation with different blobs will clarify this point. The use of Sheet1

and Sheet2 also appears justified from the results obtained. Since the height of

the numerical layer is very small (around 5% of an estimated maximum boundary

layer height), it also appears that the choice of using the vortex sheet method in

the numerical layer is not a serious issue.

It is often mentioned that maintaining core-overlap for the vortex particles is

critical to obtaining good results for the NS equations. For example, Cottet et al.

(2000) mention that the difficulty with maintaining core-overlap precludes the
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possibility of using the RVM for direct numerical simulations. Mathematical and

numerical evidence exist to demonstrate that the convergence and higher order

accuracy of vortex methods used to simulate the Euler equations for long times

require particle overlap. However, Goodman et al. (1990) show that the point

vortex method converges to solutions of the Euler equation. This result implies

that even if vortex blobs were used without an explicit overlap, second order

convergence is possible. It must also be mentioned that the PSE (Degond and Mas-

Gallic, 1989) does have a strong stability requirement for particle overlap. Thus the

need for core-overlap appears to be dictated by the diffusion scheme rather than by

the solution of the Euler equations. The simulations with which the present results

have been compared with (notably that of Koumoutsakos and Leonard (1995))

are considered to be direct numerical simulations. In the present work no explicit

core-overlap is enforced and yet the results obtained are certainly comparable to

theirs. Thus, it is not clear if the requirement for overlap is over-emphasized

in the literature. There are problems involving high-resolution and high order

convergence where particle overlap is a must as demonstrated by Perlman (1985);

Nordmark (1991, 1996) and Koumoutsakos (1997). Specifically, the results of

Nordmark (1996) are important in the context of the Navier-Stokes equations.

However, given the results obtained in the present work for the simulation of

bluff-body flows, it would appear that this is not an absolute requirement.

The difficulties in obtaining agreement with the results of Koumoutsakos and

Leonard (1995) for the Re = 9500 case beyond T = 3.0 may indicate the need

for overlap at high Reynolds numbers. However, from a study of the literature,

it appears that no other researchers show agreement for the Re = 9500 case

beyond T = 3.0. Shankar (1996) does show excellent agreement with the results of

Koumoutsakos and Leonard (1995) but does not present results beyond T = 3.0.

Further, the earlier results of Koumoutsakos (1993) are not symmetric beyond

T = 3.0. This indicates that even while ensuring overlap and using a deterministic

diffusion scheme with a large number of particles (Koumoutsakos (1993) used

around half a million particles at T = 4), the results beyond T = 3.0 are not

symmetric. Therefore, it appears that the difficulty of the Re = 9500 case is

due to the inherent instability of the flow and not necessarily related to particle
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overlap. It is to be noted that in section 8.1.5 it is shown that with a careful

choice of parameters through numerical experimentation, it is possible to obtain

fair agreement even when T > 3.0 without ensuring explicit particle overlap.

Further research would be necessary to make any conclusive comments on the

matter.

In the present work, the no-slip boundary condition is satisfied by releasing

vortex sheets to offset the slip. Even at low Reynolds numbers (Re = 40) the

results of the present work agree well with established results. The results of

Shankar (1996) also suggest that this approach of satisfying the boundary condi-

tion is adequate for the problem being studied.

The random vortex method is stochastic and produces noisy results. The

present work uses a reasonable amount of smoothing to remove this noise. The

numerical parameters are chosen based on the parametric study made in chapter 7.

As discussed in section B.1.5, the vorticity contours are smoothed optimally based

on the work of Fogelson and Dillon (1993). The noise is also reduced by ensembling

the results of several trial runs. The results of the present work clearly indicate

that by using these smoothing techniques, the random vortex method is capable

of producing results that are comparable with those of other schemes. The reason

why the present work succeeds where others failed is because a larger number of

particles are used. Earlier computations used much fewer particles. The use of

merging and annihilation allow for an effective utilization of the existing particles.

The new variance reduction scheme also helps improve the accuracy significantly.

Most of the well-known simulations for the flow past an impulsively translated

cylinder using the RVM were performed in the 80’s. The computational resources

available then were nowhere near as plentiful as today.

Koumoutsakos and Leonard (1995) compare their results for the Re = 1000

case with those of Smith and Stansby (1988) and the agreement is very poor. How-

ever, as shown in Fig. 8.15, the agreement with the results of Smith and Stansby

(1989) is much better. Both the computations of Smith and Stansby (1988, 1989)

appear to use fewer particles than necessary. The results of section 7.5.2 and in

particular Table 7.5 demonstrate that increasing the size of the blobs (by increas-
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ing k) produces increasingly erroneous results. Thus, if the size of the blob is

chosen such that the necessary scales are resolved, then the RVM does indeed

perform well.

The random walk method does have its share of problems. Most notable is

the noise inherent in the method. The noise necessitates the use of smoothing.

The smoothing does introduce some side effects. Most notable is the reduction

in the magnitude of the peaks in the curves for the vorticity flux. For example,

this is seen in the curves presented in 8.26. It is possible to reduce the amount

of noise by using an optimal time step and using a larger number of particles or

performing several trials and ensembling the results. The results presented in this

chapter only use a fairly small amount of smoothing since the results are obtained

by ensemble averaging 8 trials. While the noise is a problem it certainly does not

preclude the possibility of performing high-resolution computations.

The use of vortex sheets introduces a large amount of complexity in the im-

plementation. The conversion of blobs to sheets and vice-versa and the need to

carefully choose different sheet related options is an additional problem. For com-

putational convenience it is necessary to use sheets of the same size. If this were

not the case, the complexity of the code would increase quite substantially for gen-

eral flows. Multiple bodies also pose problems because of the issues mentioned in

section 7.5.1. Specifically, there is a problem with conserving the total circulation.

Conservation of the total circulation requires that the body be imparted a spin.

It is not clear how this can be handled for multiple bodies with the current im-

plementation of sheets having localized velocity fields. Therefore, it appears that

using a sheet with a global velocity field and one that satisfies the NS equations

instead of the Prandtl equations is necessary. An alternative would be to not use

sheets at all. Further research is necessary to explore these options for the random

vortex method.

The RVM also poses problems with randomly moving particles in the vicinity

of complex bodies. The present works develops an efficient algorithm in section 5.1

to handle this.
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The need to use a large number of particles to reduce the noise might be at first

perceived as a significant disadvantage of the RVM. However, there are some points

to consider. The number of particles used in the present work are comparable

to those used by the PSE. For example, the runs presented in section 8.1.4 for

Re = 3000 used around 125000 blobs and 2900 sheets at the end of T = 6 in each

trial run. Eight trials were made and the results of these ensembled. For the same

case, Koumoutsakos and Leonard (1995) use around 300000 particles at T = 6. It

may be argued that the present work uses a total of 1 million particles to compute

the ensemble. However, this would be a naive comparison. The RVM enables for a

trivial parallelization. Thus, on a cluster of 8 desktop machines the present results

achieve a linear scale-up. That is, the time taken for 8 runs is almost the same

as that taken by one individual run. Further, very little special programming is

necessary to enable this. Eight different seeds are considered and each processor

merely runs a serial code. In the case where the new variance reduction scheme

(see section 7.8) is used, a simple program is used to communicate and merge the

results every nsync time steps. Thus, the eight trial runs were made in parallel on

a loosely-coupled cluster of desktop machines with a minimal amount of effort.

Therefore, this computation cannot be equated to that of a parallelized vortex

method code using one million particles running on a supercomputer. Further, as

seen from the results in section 7.7.2, it is possible to obtain good results with a

fewer number of trials. For example, four runs would produce similar results and

reduce the total particle count. It is also possible to halve the number of particles

by increasing γmax.

Fig. 8.39 plots the drag coefficient versus T for Re = 3000. Two processors are

used along with the new ERVM. ∆t = 0.025 (C = 6.35), k1 ≈ 0.022 γmax = 0.05,

Ra = 0.15 and Rm = 0.3. The frequency of synchronization between trials, nsync

is 5. The total number of particles at the end of T = 6 is around 95000 blobs

and 2400 sheets. The average number of particles is 65000 blobs and 2800 sheets.

The total run time on a pair of Pentium IV machines (one running at 1.7Ghz

and the other at 1.3Ghz) was 107 minutes. The agreement between the present

computation and other results is very good. The number of particles used is

comparable to that used by Ploumhans and Winckelmans (2000) with the non-
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Figure 8.39: Drag coefficient Cd versus T for impulsively translated cylinder at
Re = 3000. nproc = 2, nsync = 5 and γmax = 0.05.

uniform resolution scheme at the same time. Thus, it is clear that the number of

particles necessary is similar to that used in computations employing the PSE.

Shiels (1998) presents results for the drag coefficient computed using the cor-

rected core-spreading vortex method (CCSVM) (Rossi, 1996) for Re = 3000.

While fewer particles are necessary, the time step needs to be small (∆t = 0.005)

for agreement with the results obtained using the PSE. As larger time steps are

chosen there is a fair amount of variation in the drag coefficient. As seen in

Fig. 8.39, the present results are as good if not marginally better than his results.

It is also to be noted that the time step used for the RVM is 0.025 whereas the

CCSVM appears to require a value that is five times smaller. Thus, these results

show clearly that the computations using the RVM and those employing the PSE

or the CCSVM are comparable in terms of both accuracy and efficiency.

A comparison of the results at Re = 9500 is a little more complicated due to

the difficulty in maintaining symmetry beyond T = 3. The lack of data from other

schemes beyond this time is also a problem. Koumoutsakos and Leonard (1995) use

around 1 million particles at the end of T = 6. The present computations require

around 1.5 million particles in the ensemble. It seems reasonable to assume that
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the linear speedup of the present method coupled with the slightly higher time

step makes the present computations as efficient as those of Koumoutsakos and

Leonard (1995).

Shankar (1996) employs the vorticity redistribution scheme for diffusion in his

computations. For the Re = 9500 case he obtains converged results at T = 3.0

with just 60000 vortices. The computations of the present work require about

140000 particles per trial, at the same time. However, the present work goes on

to obtain nearly symmetric results all the way up to T = 6. The VRT of Shankar

(1996) is also a little more complicated to implement than the RVM and is more

computationally expensive. He also uses a fourth order Runge-Kutta integration

scheme with a smaller ∆t = 0.01. Therefore the VRT appears to take the same

computational effort that one trial would take using the RVM.

It is to be noted that the focus of the present work is not to minimize the

number of particles used to obtain results but to show that high-resolution results

are possible with the RVM. The fact that the RVM is trivially parallelizable on

commodity computers is an interesting aspect of the method.

It is not the intention of this work to claim that the RVM is a superior method

to the deterministic schemes. However, the results obtained here clearly demon-

strate that the RVM is certainly a usable method for high-resolution computations.

The RVM does perform quite favorably when a fair comparison is made with most

deterministic diffusion schemes.

In the next chapter the contributions made in the present work are summarized

and conclusions are drawn. Suggestions for future research are also made.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

In this work, a fairly general random vortex method based solver has been devel-

oped. The resulting code can be used to simulate two-dimensional, incompressible,

viscous fluid flows. Much attention has been paid towards an efficient implemen-

tation. This chapter summarizes the important contributions made in the present

work. Conclusions based on the work are presented followed by a list of suggestions

for future work.

9.1 Contributions made

The key contributions of the present work are listed below.

• An accurate cubic panel method to eliminate the edge effect and satisfy the
no-penetration boundary condition is developed.

• An original implementation of the adaptive fast multipole method (AFMM) (Car-
rier et al., 1988) is provided.

• A generalization of the AFMM to handle passive particles efficiently is pro-
posed.

• The AFMM is extended to accelerate the computation of the velocity field
due to linear and higher order vortex panels.

• Anderson’s FMM without multipoles (Anderson, 1992) is implemented in the
context of the AFMM. This method is compared with the AFMM extended
to higher order panels.

• An efficient fast algorithm to handle randomly moving particles in the pres-
ence of complex geometries is developed. A simple idea to characterize the
complexity of a geometry is also proposed.

• Annihilation of oppositely signed vortex particles is used as a means to im-
prove accuracy and computational efficiency. Merging of like signed vorticity
is also used to reduce the number of particles.



• An object oriented design for vortex based flow solvers is developed and
discussed.

• A study of the connection between the various parameters used in the RVM
is carried out. Several recommendations on the optimal choice of these
parameters are made.

• A simple and new variance reduction scheme is introduced. The resulting
method is called the Ensembled RVM (ERVM). The method takes advantage
of the inherent parallelism of the RVM. It is also fairly easy to implement.

• The flow past an impulsively started cylinder is simulated. An exhaustive
comparison of the results are made with various high-resolution simulations
that use deterministic diffusion schemes. It is clearly demonstrated that the
RVM can be used to perform high-resolution simulations.

9.2 Conclusions

The significant conclusions that can be drawn from the present work are as follows.

• The random vortex method can certainly be used for high-resolution sim-
ulations provided due care is taken to resolve fine scale features. Despite
being a stochastic method and requiring a large number of particles, the re-
sults obtained are quite comparable to most modern deterministic schemes
in terms of accuracy and efficiency. The RVM is completely grid-free and
relatively easy to implement. The method does have its share of prob-
lems as discussed in section 8.2. However, the present work clearly demon-
strates that it is capable of high-resolution simulations. The number of
particles is comparable to the numbers used by computations employing
the particle strength exchange method (PSE) (Koumoutsakos and Leonard,
1995; Ploumhans and Winckelmans, 2000). For the same accuracy, it ap-
pears that the RVM is at least as efficient as the corrected core spreading
model (Rossi, 1996; Shiels, 1998). However, the vorticity redistribution tech-
nique (Shankar, 1996; Shankar and van Dommelen, 1996a) requires much
fewer particles at a slightly increased computational cost.

• The use of ensemble averaging in the random vortex method is important.
A single trial can be inconclusive. Ensembling the outcome of several trials
is an effective means to obtain more reliable results.

• The use of ensemble averaging allows for a trivial parallelization. This aspect
appears to have been unexplored in the past. A simple and new variance
reduction scheme is introduced that allows for a significant reduction in the
error. This method is also inherently parallel in nature and quite easy to
implement.
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• For the problem considered, at Reynolds numbers less than 9500, good re-
sults were obtained by using the RVM along with routine ensemble averaging.
In chapter 8, the results for the Re = 40, 550 and 1000 cases were obtained
without the use of the ERVM. The results in chapter 7 indicate that this
approach is sufficient for Re = 3000 also. However, for the Re = 9500 case,
obtaining a symmetric flow beyond a time of T = 2.5 is very difficult. The
use of the ERVM for this case becomes extremely important.

• As with any vortex method, it is imperative to use fast algorithms to make
the computations efficient.

• When the RVM is used, it is important to optimally smooth (Fogelson and
Dillon, 1993) the vorticity contours as discussed in section B.1.5. The curves
obtained for the various diagnostic quantities also require smoothing. Some
techniques for this are discussed in section B.1.2.

• The annihilation of oppositely signed vorticity is extremely important in
an implementation of the random vortex method. Merging of like signed
vortices is also of use but is not as critical as that of oppositely signed
vorticity. In section 5.4.2 and section 7.5.4 it was shown that an order of
magnitude reduction in the number of particles is possible if annihilation is
performed. This is a significant improvement.

• The implementation of vortex sheets leads to several complications. The
sheet-blob conversions are problematic. Sheets also introduce complications
in ensuring that the total circulation in the flow is conserved. Using sheets
of different lengths also introduces implementation difficulties. The sheets
also introduce a number of parameters that need to be chosen carefully.

• The AFMM is a fairly versatile fast algorithm that has a very important
place in vortex methods. By introducing “cause” and “effect” particles it
is possible to elegantly generalize the method to handle passive particles.
Decomposing the domain of interacting particles into causes and effects is a
powerful and general multi-scale modeling concept that clearly goes beyond
the AFMM. This idea is used in the implementation of every fast algorithm
developed in the present work.

• Object-oriented design and analysis enables one to develop a large volume
of powerful, readable, maintainable and extendible code. The design also
enables for a clearer understanding of the algorithms. This directly results
in elegant and powerful abstractions and significant amounts of code-reuse.

In section 7.7.2, several recommendations were made regarding the implemen-

tation of the RVM. The most significant of these are summarized below.

• A second order integration scheme is optimal and allows for larger time steps
without increasing the noise levels.
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• Strang type viscous splitting allows for larger time steps than the standard
viscous splitting approach. For the same time step, a small performance
penalty exists. However, the feasibility of larger time steps more than offsets
this cost.

• Choosing too small a time step (C < 1) results in an increased noise in the
results. In practice it is seen that choosing larger time steps with C ≤ 10
works well.

• γmax should be chosen such that the cell Reynolds number, Reh = γmaxλ/ν,
be O(1) or less. Reducing γmax as much as possible is also recommended.

• The length scale of the vortex blobs, k1 can be chosen such that the numer-
ical layer height is less than 10% of an estimated maximum boundary layer
height. Values of k1 around 0.025 produce very good results.

• Sheet release style 3 (section 3.4.1) appears to produce the best results at
little additional computational expense.

• Changing the sheet type between Sheet1 and Sheet2 (section 2.4) does not
produce any significant improvements in the results. Sheet tagging also does
not appear to be beneficial.

9.3 Suggestions for future work

There are several issues worth exploring in the future with the current code as a

basis. These are listed below.

• The Ensembled RVM was introduced in section 3.9 and studied numerically
in section 7.8. No theoretical analysis of the method is performed in this
work. This appears to be an interesting area of study since the method is
likely to be applicable to any Monte-Carlo technique.

• Vortex sheets introduce many difficulties in the implementation. It would
be of interest to see if similar results are achieved without the use of vortex
sheets. Several anisotropic vortex elements have been also developed and
studied by researchers (Teng, 1982; Huyer and Grant, 1996; Bernard, 1995;
Marshall and Grant, 1996; Summers, 2000). It would be of interest to com-
pare these techniques with the traditional sheet method and choose the best
of these in terms of efficiency and accuracy.

• The errors introduced by annihilation need to be carefully studied. More
sophisticated merging and annihilation algorithms can be used.

• If the body geometry deforms in time, it is necessary to solve the system
of equations used in the panel method at each time step. Iterative matrix
solution techniques should be considered to improve efficiency. The iterative
solvers should be able to handle complex geometries.
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• The present mechanism for generating panels on the surface of the body to
satisfy the no-penetration condition is non-adaptive and requires the user to
generate the panels. An adaptive panel method that automatically adds and
removes panels given an arbitrary geometry and a desired accuracy would
be useful.

• Deterministic diffusion schemes could be implemented and compared directly
to the RVM. The VRT (Shankar and van Dommelen, 1996a) and corrected
core spreading (Rossi, 1996) model are of particular interest due to their
grid-free nature.

• If higher order accuracy for long times is desired, the vorticity field needs to
be periodically re-meshed in order to ensure particle overlap. No re-meshing
has been performed in the present work. It is unclear as to how re-meshing
is possible or of any use in the context of the RVM. This requires careful
investigation. For higher order accuracy it is also of considerable interest to
implement the fast adaptive vortex method of Strain (1997).

• The vorticity field in the form of particles is interpolated onto a regular grid
as described in section B.1.4. Using a regular grid is expensive in terms of
memory requirements. Interpolating this vorticity on an adaptive Cartesian
mesh or an unstructured grid would be more efficient. One possible approach
of doing this is to use the technique described by Strain (1996, 1997).

• It is of interest to apply the ideas of verification for CFD solvers (refer Roache
(1998)) to vortex methods. This would allow for systematic testing of vortex
method implementations.

• Optimization of several of the algorithms is of considerable practical use.
Some of the techniques mentioned in Russo and Strain (1994) and also in
section A.3.6 can be used to accelerate the AFMM.

• Fully parallelizing the algorithms developed is imperative if larger problems
are to be handled.

The code developed in the present work can be used as a basis to explore these

possibilities.
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APPENDIX A

THE FAST MULTIPOLE METHOD

In the context of vortex methods, the fast multipole method (FMM) is a fast

algorithm that can be used to compute the velocity or potential due to a collection

of vortex particles. For N vortex blobs, a direct velocity computation requires an

O(N2) computation. The FMM allows this to be computed in an O(N) or an

O(N log N) number of operations.

There are various flavors of the FMM. In this appendix, a brief review of the

various flavors of fast algorithms is first provided. Subsequently, the O(N log N)

body-cell treecodes are described. The adaptive fast multipole method (AFMM)

of Carrier et al. (1988) is then described in considerable detail. A simple approach

to compute the Xb list is also developed. Pseudo-code is provided for greater

clarity.

A.1 Background

The Cloud-In-Cell (CIC)/Vortex-In-Cell (VIC) technique (Christiansen, 1973;

Smith and Stansby, 1988; Tryggvason, 1989; Smith and Stansby, 1989; Cottet,

1990) was the earliest scheme used to obtain velocity fields rapidly. In these

class of methods the vorticity field is interpolated onto a grid. A fast Poisson

solver is used to obtain the stream function from which the velocity field is com-

puted and interpolated back to the particle positions. The method requires an

O(N) +M log(M) work, where M is the number of nodes in the grid. Anderson’s

method of local corrections (Anderson, 1986) extends this technique so that it

may be used with higher order accurate vortex blobs. The difficulty with these

methods is the requirement of a fixed grid.

The first of a class of grid-free, tree-based, techniques was developed by Appel

(1985) and was used to accelerate the N -body gravitational problem. These class



of methods are called treecodes and employ a tree data structure to organize clus-

ters of interacting particles. This method was also developed independently by

Barnes and Hut (1986). Treecodes hierarchically organize clusters of particles and

introduce particle-cluster interactions to reduce the computational cost. If the

distance between a cluster and a particle is “large enough”, then the interaction

can be performed between the cluster as a whole and the particle. For particles

that are nearby, the interactions are performed directly. This reduces the compu-

tational cost to O(N log N). Using the terminology of Salmon and Warren (1994),

these methods are called body-cell treecodes. Compared to the direct O(N2) al-

gorithm, which is trivial to program, a significant amount of programming effort

is required to implement treecodes.

The fast multipole method (FMM) due to Greengard and Rokhlin (1987) is

an O(N) treecode based on the work of Rokhlin (1985). This method uses mul-

tipole expansions to represent the potential of clusters of charges accurately. The

method reduces the operation count further by introducing cluster-cluster inter-

actions in addition to particle-cluster interactions. It is ideally suited for uniform

distributions of particles and can provide a highly accurate approximation to the

velocity field. The adaptive fast multipole method (AFMM) of Carrier et al.

(1988) is an adaptive O(N) algorithm that works efficiently for both non-uniform

and uniform particle distributions. This method introduces interactions between

clusters that are reasonably close to each other but are of different sizes. This

makes the algorithm more complicated but highly efficient. Such methods that

employ cluster-cluster interactions are called cell-cell treecodes (Salmon and War-

ren, 1994).

There are several different flavors of treecodes apart from the ones mentioned

above. Van Dommelen and Rundensteiner (1989) develop an O(N log N) algo-

rithm using a Laurent series to represent the clusters of vortices. Anderson (1992)

develops an interesting technique called the “fast multipole method without multi-

poles”. This method uses Poisson’s integral formula in order to obtain equivalents

for the multipole expansion. The method is presented in the framework of a multi-

grid algorithm and can be used in both two and three-dimensions. Salmon and
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Warren (1994) discuss body-cell treecodes and study the worst case error intro-

duced by these schemes. They propose new criteria to find sufficiently far away

clusters and develop an efficient and accurate technique to adaptively traverse

the tree structure. Draghicescu and Draghicescu (1995) develop an algorithm to

accelerate vortex blob interactions without assuming that the behavior of the the

vortices far away from the center is like that of the point vortex. They use Taylor

expansions specific to the particular velocity kernel being used in order to represent

clusters of particles. Lustig et al. (1995) use Chebyshev economization to repre-

sent the multipoles in a more efficient manner and thereby improve computational

efficiency of the AFMM (Carrier et al., 1988). Makino (1999) develops another

multipole-without-multipoles algorithm by using pseudo-particles to express the

potential field of a cluster of particles. Vosbeek et al. (2000) present a hierarchical

element method for use with contour dynamics (Zabusky et al., 1979) simulations.

Their method is an extension of Anderson’s scheme (Anderson, 1992). They derive

expressions for the Poisson integrals for the velocity field and also provide error

bounds for the expressions.

The algorithms mentioned thus far are used to evaluate discrete sums of the

free-space Green’s function (or its derivatives). For the Green’s function inside a

cube in two or three dimensions, Strain (1992) develops fast algorithms to evaluate

discrete sums and evaluate layer potentials on the boundary of a domain. This

brief survey clearly indicates that a large number of fast algorithms have been

developed and used.

Of the methods discussed above, the present work implements the adaptive

fast multipole method (AFMM) of Carrier et al. (1988). While this algorithm is

fairly complex to implement it is very efficient. The basic ideas used in the AFMM

are discussed in greater detail in the following.

A.2 Body-cell treecodes

The original O(N log N) body-cell treecodes like the one developed by Barnes and

Hut (1986) are discussed first since they are much easier to understand. In the
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following, a simple two-dimensional treecode is developed to compute the velocity

field for vortex blob interactions. After this the AFMM algorithm is explained.

The general structure of the algorithm is as follows. A tree structure is built

that identifies clusters of particles and organizes them in the tree. Multipole

expansions for each cluster are constructed efficiently. Each particle is considered

and the effect of all clusters is computed on the particle to obtain the total velocity

on the particle. Each of these steps is discussed in the following sections.

A.2.1 Generating the tree

The hierarchy of particles is first generated in the following manner. A square

region that contains all the interacting particles is identified. This is called a cell

(or box) at level 0. This cell is divided or split into 4 children and these cells are

called daughter or child cells. The four children generated from the level 0 cell are

at level 1. A cell that has been split is called a parent. In general, a cell is split if

it has more than np particles in it. Cells of the level l+1 are obtained by splitting

each cell at level l with more than np particles into 4 children. This process is

repeated till there are no more than np particles per cell. The non-empty, un-split

cells are called childless or leaf cells. In this manner the collection of particles

is distributed among a set of childless cells that are hierarchically organized in

a quad-tree structure. Many standard tree-based methods use a binary-tree. A

quad-tree is used here since the intention is to finally develop the AFMM, which

uses the same structure.

The following definitions are useful to note.

Definition A.1 A cell c is defined to be “adjacent” to another cell b if they share

a side or corner.

Definition A.2 A “colleague” of a cell c at level l is defined as a cell at level l

which is adjacent to c.

Definition A.3 An “associate” of a cell c at level l is defined as either a colleague
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of c or a childless cell at level less than l and adjacent to c.

Clearly, the set of colleague cells is a subset of the set of associate cells. Also note

that if an associate of a cell c is not a colleague, then it is childless and larger than

c.

Once the clusters of particles are hierarchically organized into cells, the multi-

pole expansion of the velocity due to the particles in each cell is to be computed.

A.2.2 Multipole expansions

The velocity at a point z, due to a point vortex having strength (circulation) Γ1

and located at a position z1 is given by,

V (z) =
−iΓ1

2π(z − z1)
.

This can be written as,

V (z) =
−iΓ1

2π((z − z0)− (z1 − z0))
=

−iΓ1

2π(z − z0)

(
1− z1 − z0

z − z0

)−1

=
−i

2π

∞∑
j=1

aj

(z − z0)j
; aj = Γ1(z1 − z0)

j−1,

where z0 is an arbitrary point. This summation clearly converges when z is such

that |z−z0| > |z1−z0|. Depending on z, z0 and z1, the expansion can be truncated

to p terms for a specified accuracy. This is the multipole expansion for a single

point vortex.

Figure A.1 illustrates a circle C of radius R centered at z0 containing m par-

ticles at zj and having strengths Γj. The velocity induced by these particles at a

point z can be given as,

V (z) =
m∑

j=1

−iΓj

2π(z − zj)
.
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Figure A.1: A cluster of m point vortices considered for the multipole expansion.

The multipole expansion for this cluster of particles is given by,

V (z) =
−i

2π

∞∑
j=1

aj

(z − z0)j
; aj =

m∑

k=1

Γk(zk − z0)
j−1 (A.1)

This summation clearly converges for z outside the circle C. The summation can

be truncated to p terms and the truncation error is bounded as,

∣∣∣∣∣V (z)− −i

2π

p∑
j=1

aj

(z − z0)j

∣∣∣∣∣ ≤
A

c− 1

(
1

c

)p

(A.2)

where

c =
∣∣∣ z

R

∣∣∣ ; A =
1

2π

m∑
j=1

|Γj|. (A.3)

This error term is quite easy to derive1. The specialty of equation (A.1) is that the

coefficients aj are obtained by a summation of the coefficients due to individual

blobs. From equation (A.2) it is easy to see that if c ≥ 2, then ensuring an

accuracy of ε requires the use of p ≥ − log2 ε terms in the series.

1A more detailed analysis of the various error terms discussed in these sections is given in
Greengard and Rokhlin (1987)
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A.2.3 Shifting multipole expansions

A multipole expansion of a cluster of particles in the circle C, with center z0, can

be shifted to the origin resulting in the following,

V (z) =
−i

2π

∞∑
j=1

bj

zj
; bj =

j∑

k=1

ak


 j − 1

k − 1


 zj−k

0 . (A.4)

This expression converges outside a circle centered at the origin with radius

R+ | z0 |. It can be used to shift the center of the multipole expansion from

the center z0 to any other point zc by replacing z and z0 with z − zc and z0 − zc

respectively. The truncation error for this is bounded as,

∣∣∣∣∣V (z)− −i

2π

p∑
j=1

bj

zj

∣∣∣∣∣ ≤
A|z|

|z| − |z0| −R

∣∣∣∣
|z0|+ R

z

∣∣∣∣
p+1

, (A.5)

where A is as given in equation (A.3).

Hence, the multipole expansion for a cluster can be readily computed us-

ing equation (A.1) and then transfered from one center to another using equa-

tion (A.4).

Consider two clusters of particles enclosed within circles of the same radius,

R. Let the center of these circles be separated by a distance of 3R. Now, if

the multipole expansion of the cluster of particles inside one circle is evaluated

at any point in the other circle, it is guaranteed that c ≥ 2, where c is given in

equation (A.3). Such clusters of particles are called “well separated”. Let one

cluster have n1 particles and the other have n2 particles. The cost of computing

the velocity due to the clusters on each other directly without the use of the

multipole expansion is O(n1n2). Obtaining the multipole coefficients of p terms

for each cluster would require n1p + n2p computations. Then the interaction of

each cluster on the other can be computed using the multipole expansions with

(n1 + n2)p computations. This results in an O((n1 + n2)p) computational cost.

Clearly, when n1 and n2 are large it is more efficient to compute the interactions

using the multipole expansions. This idea is used systematically in treecodes.
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A.2.4 The body-cell algorithm

The body-cell algorithm proceeds in three steps.

1. Generate the quad-tree using the algorithm described in section A.2.1.

2. Compute the multipole expansion for each cell.

3. Find the velocity at each particle.

Once the tree is generated, the multipoles for each cell are computed as follows.

Let the total number of levels in the tree be nlevel. For each childless (leaf) cell,

compute the multipole expansion due to all the vortices in it about the center of

the cell using equation (A.1). Transfer the multipole of each cell at a particular

level to its parent cell using equation (A.4) and add the resulting coefficients to

the parent’s multipole coefficients. Keep adding the multipole coefficients from

the children to the respective parents till level 2 is reached. This level will have at

most 16 cells. Note that level 1 and level 0 have cells that are not well separated

and therefore there is no point in computing the multipole expansion of these.

Once this step is completed, all relevant cells will have multipole expansions for

the respective particles that they contain. This completes the second step in the

above sequence.

The above procedure is described in algorithm A.1. The Python programming

language (van Rossum et al., 1991–) is used to express the pseudo-code for the

algorithms2.

Algorithm A.1 ComputeMultipoles()

for cell in childless cells :
# compute multipole expansions of particles inside cell .
cell .computeMultipoleCoefficients()

for level in range(n level − 1, 1, −1):
# for each cell ‘ cell ’ in all cells at level ‘ level ’
for cell in cells [ level ]:

for child in cell . children ():
# transfer multipole from child and add to parent.
child . transferMultipole( cell )

2Python is object oriented, highly expressive and freely available. This makes the pseudo-code
relatively easy to understand while being expressive enough to explain the algorithms.
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Definition A.4 Consider a cell c centered at zc, the radius of the cell, Rc, is

defined as the radius of the circumcircle of the cell.

Definition A.5 A point z is considered “well separated” from the cell, c, centered

at zc, if |z − zc|/Rc ≥ 2.

Definition A.6 Two cells of radius R, centered at zb and zc respectively are said

to be “well separated” if |zb − zc| ≥ 3R.

To compute the velocity, the following procedure is used. Consider each child-

less cell. Consider each particle of the cell. Let the position of the particle be z.

Now, consider each cell in level two3. If the cell is well separated from z (Defi-

nition A.5), then compute the effect of this cell on the point using the multipole

expansion. If the cell is not well separated, repeat the check for each of its chil-

dren. If in this process one finds leaf/childless cells that are not well separated

from z, then they are clearly too close to z and their influence on z is to be com-

puted directly. This process is repeated for all the particles. Note that even the

childless cell containing the particle will be traversed in this process. At the end

of this procedure the velocity at each particle is known. One important restriction

to note is that the minimum cell size should be such that the core radius of the

blobs do not exceed the cell size. If this were to happen, the velocity due to the

blobs will not behave like point vortices on well separated cells and the multipole

expansion evaluation will be inaccurate. The pseudo-code for this algorithm is

presented in algorithms A.2 and A.3. Algorithm A.2 is evidently a recursive one.

As can be seen above, the algorithms are fairly easy to understand and pro-

gram. This approach of computing the velocity is generally how body-cell treecodes

work. The definition of well-separatedness depends on the implementation (see

Salmon and Warren, 1994). Instead of using multipole expansions it is also pos-

sible to also use other schemes. For example, Anderson (1992) uses Poisson’s

integral formula and Makino (1999) uses pseudo-particles.

3In general there will be more than 2 levels in the tree, for if there are less than 2 levels, there
are not enough particles for a tree algorithm to be worthwhile
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Algorithm A.2 ComputeCellVelocity(c, p)

# ‘c’ is a cell and ‘p’ is the particle at which the velocity is computed
v = 0
if abs(c.center() − p.position()) >= 2.0∗c.radius():

v = c.multipoleExpansion(p)
elif c. isParent ():

for child in c. children ():
v += ComputeCellVelocity(child, p)

else:
v = c.directVelocity (p)

return v

Algorithm A.3 ComputeVelocity()

for cell in childless cells :
for p in cell . particles ():

# for cell ‘b’ in cells at level = 2
for b in cells [2]:

p. velocity += ComputeCellVelocity(b, p)

These fast algorithms are much faster than the O(N2) direct method when N

is large. The advantage with these methods is that due to their simplicity they

are easy to implement and parallelize. However, they are O(N log N) schemes and

are not as efficient as the O(N) AFMM.

A.3 Adaptive Fast Multipole Method (AFMM)

The adaptive fast multipole method (AFMM) is a cell-cell treecode. The col-

lection of particles is organized into a hierarchical structure as done for the

body-cell treecodes. The significant difference is that the AFMM uses cluster-

cluster, particle-cluster and particle-particle interactions. The O(N log N) body-

cell treecodes only use particle-cluster and particle-particle interactions. For each

particle in a given childless cell the entire tree is traversed to search for well sep-

arated cells. This is optimized in the AFMM by considering cell-cell interactions.

This results in a more complex but highly efficient algorithm. The key idea used

is the transfer of the multipole expansion of a cell c, to a local expansion about

the center of a well separated cell, b.
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A.3.1 Local expansions

Given a multipole expansion (equation (A.1)) for particles inside a circle C of

radius R and centered at z0 such that |z0| > (c + 1)R with c > 1, the multipole

expansion can be described by a power series in z that converges inside a circle,

C1, centered at the origin, having radius R,

V (z) =
∞∑

j=0

bjz
j (A.6)

where,

bj =
−i

2πzj
0

∞∑

k=1

(−1)k ak

zk
0


 j + k − 1

k − 1


 , (A.7)

where ak is given in equation (A.1). Note that if c ≥ 2, the circles C and C1 are

well separated (Definition A.6). When equation (A.6) is truncated to p terms the

error in the approximation is bounded by,

∣∣∣∣∣V (z)−
p∑

j=1

bjz
j

∣∣∣∣∣ ≤
A(4e(p + c)(c + 1) + c2)

c(c− 1)

(
1

c

)p+1

, (A.8)

where A is given in equation (A.3), e is the base of natural logarithms and p ≥
max(2, 2c/(c − 1)). The derivation of this error term is a little involved and is

worked out by Greengard and Rokhlin (1987). Using the above, it is possible to

compute the interaction between two well separated clusters. Instead of traversing

the entire tree for each particle and finding well separated cell interactions, the

local expansion is found and evaluated at each particle to obtain the velocity.

It is to be noted that if the multipole expansion (equation (A.1)) is for a

particle that is exactly at z0, then ak is non-zero only when k = 1. In this case

equation (A.7) simplifies considerably. Given this, the following definition proves

useful subsequently.

Definition A.7 Consider a cell c and another cell b. If the multipole expansion of

each particle in c is expressed about the particle’s position and converted to a local

expansion in b then such a local expansion is called a “special local expansion”.
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A.3.2 Shifting local expansions

Given any local expansion in a cell of radius, R centered at z0, and coefficients ak,

the local expansion center can be transferred to the origin as,

n∑
j=0

aj(z − z0)
j =

n∑
j=0

zj

n∑

k=j

ak


 k

j


 (−z0)

k−j (A.9)

This expression is exact and there is no error involved in the change of the center

of a local expansion. This transfer is only performed from a parent cell to a child

and therefore the transferred local expression will converge inside the child.

A.3.3 General idea

As seen earlier, the central idea used in treecodes is to represent clusters of particles

as single computational units and define cluster-particle interactions in addition

to particle-particle interactions. The AFMM additionally employs cluster-cluster

interactions to accelerate the computations. Due to the adaptive nature of the

mesh there are different flavors of cluster-cluster interactions. Consider two cells

b and c. Let b be the childless cell on which the velocity due to cell c is computed.

The important cases are categorized below.

• b and c are adjacent.

– c is childless. These interactions must necessarily be computed directly
and no multipole acceleration is possible.

– c has children. The children must be considered for possible interactions
with b in a similar manner.

• b and c have the same size and are well separated (Definition A.6). In this
case one can compute the interaction of c on b by converting the multipole
expansion of c as a local expansion on b. A hierarchy of well separated cells
can also be handled using a hierarchical application of the same idea and
making use of equation (A.9) to translate the local expansions.

• b is larger than c and not adjacent to it. In this case, due to the nature of
the construction of the cells, it can be seen that any particle inside b is well
separated from c (Definition A.5). Consequently, the effect of cell c can be
found by evaluating the multipole expansion of c on each particle of b.
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• b is smaller than c which is not adjacent to it and is childless. In this case it
is possible to evaluate the effect of the local expansion of each particle in c
about itself as a local expansion on b. This is the special local expansion as
defined in A.7.

It is therefore clear that the following are essential in order to compute the

velocity field using the AFMM,

• direct computation of the velocity field;

• evaluation of the multipole expansion about a given center (equation (A.1));

• transferring the multipole to a different center (equation (A.4));

• conversion of the multipole expansion to a local expansion about another
center that converges in a radius around the new center (equation (A.6));

• transfer the local expansion to another center (equation (A.9)).

A.3.4 Definitions and notation

The particles in the domain are hierarchically organized as described in sec-

tion A.2.1. The definitions of various cells noted in that section are of importance

in the following discussion. The colleagues and associates of a cell b are illustrated

in Figure A.2. The cell marked a is an associate cell. Recall that a colleague cell

is also an associate cell.

For any cell b at a level l, 5 different lists are associated with it. The definition

of these lists is mostly reproduced from Carrier et al. (1988).

Ub If b is childless, this list consists of cell b and all childless cells adjacent to b.

If b is a parent then the list is empty.

Vb This list consists of all the children of the colleagues of b’s parent that are

well separated from b.

Wb If b is a parent, the list is empty. If b is childless, it consists of all descendants

of b’s colleagues that are not adjacent to b.
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Figure A.2: Colleagues and associates of cell b. Cells marked c are colleagues (and
therefore associates) and those marked a are only associate cells (and
not colleagues).
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Figure A.3: The five different lists for a cell b. The cells marked ‘u’ belong to the
Ub list, ‘v’ to the Vb list and similarly for the other lists.

246



Xb List of all cells c such that b is an element of Wc, i.e. if b is contained in c’s

Wc list defined above. This implies that c must be childless and must also

be larger than b.

Yb Consists of all cells that are well separated from b’s parent.

The above lists are not trivial to determine. The Wb and Xb lists are especially

difficult. The various lists for a particular cell b are illustrated in Figure A.3.

Carrier et al. (1988) compute Xb for each childless cell. Yb is never computed

explicitly since it is already computed at coarser levels via the Vb lists. In the

present work the direct computation of the Xb list is eliminated and a simpler Zb

list is defined. This list is similar to the Vb list.

Definition A.8 The Zb list for a cell b is defined as the set of all childless asso-

ciates of b’s parent that are not adjacent to b.

It can be seen that Zb is in some sense an inverse of the definition of the Wb

list. Hence, the relevant lists to be noted are, Ub, Vb, Wb and Zb. In Figure A.3 the

Zb list is the same as the Xb list with x replaced with by z. Figure A.4 illustrates

these lists for a slightly different set of cells. This list of cells is obtained by

splitting the cell b from Figure A.3 into four children. It can be seen from these

figures that using the Zb list lets one define Xb in a hierarchical manner in the

same way that the Vb list lets one define the Yb list easily. That is, the union of

the Zb list from Figure A.3 and A.4 gives one the Xb list for the cell marked b in

Figure A.4. This makes it easy to implement the computation of the Xb list.

A.3.5 The adaptive fast multipole algorithm

In this section the information from the original paper (Carrier et al. (1988)) is

supplemented so that it is easier to implement the AFMM. Provided are algorithms

with pseudo-code that demonstrates how to compute the various lists and the

actual algorithm.
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Figure A.4: The Ub, Vb, and Zb lists for cell b. The cells marked ’u’ belong to the
Ub list, ‘v’ to the Vb list and ’z’ to the Zb list.

It is important to note the following in an implementation of the AFMM. All

the key information (and the lists for a given cell) can be obtained for a given cell

if the following information is available,

• level, center and length of the cell;

• its parent cell;

• its children;

• and its associates.

Associate cells naturally extend the concept of a colleague as defined in sec-

tion A.2.1. This is especially useful when there is no colleague at a particular side

of the cell (say for example the left colleague of a cell does not exist). Clearly,

even if the colleague does not exist, the associate cell might exist. This associate

cell, that is not a colleague, is obviously larger than the cell, as illustrated in Fig-

ure A.2. If the associate cell does not exist, there are no particles in that region.

Note that, given the associates of a cell it is trivial to find the colleagues.

In addition to the above, each cell needs to store the multipole coefficients (aj,

equations (A.1)) for the p term multipole expansion and the p local expansion

coefficients (bj, equation (A.7).
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Once the tree is generated, the general idea of the algorithm is as follows.

• Compute the multipoles for each cell as done for the body-cell treecodes.
This is also called an upward pass since the calculation proceeds from the
smallest cells (large levels) to the largest (smaller levels).

• Perform the first downward pass. Starting from level 2 and proceeding to
all larger levels, do the following for each cell b,

– transfer the multipole expansion of the cells in the Vb list to local ex-
pansions in b;

– compute the “special local expansions” on b due to each of the cells
in the Zb list (Definitions A.8 and A.7). Note that these special local
expansion coefficients are added to the local expansion coefficients of b.

• Perform the second downward pass. Starting from level 2 and proceeding
through all levels, shift the local expansions of each cell to its children.

• Compute the velocity as follows. Consider each childless cell b. For each
particle p in b, do the following,

– add the direct velocity due to each cell in the Ub list to p;

– add the velocity computed using the multipole expansion of all cells in
the Wb list to p;

– add the velocity computed using the local expansion coefficients of b on
p.

At the end of this procedure the velocity on each particle has been obtained

using the AFMM. In the pseudo-code provided below it is assumed that each cell

has information about its parent, children and its associates. The length of a cell

is the length of its side.

Algorithm A.4 FindUbWb(b, cell, Ub, Wb)

## cell is possibly in the Ub or Wb lists
## Ub and Wb are lists of the Ub and Wb cells.
d = 0.5∗b.length() + cell .length()
dist = b.center() − cell . center()
if (abs(dist . real ) > d) or (abs(dist .imag) > d):

Wb.append(cell)
else:

if cell . isParent ():
for child in cell . children ():

FindUbWb(b, child, Ub, Wb)
else:

Ub.append(cell)
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Algorithm A.5 UbWbInteraction(b)

## b is the cell for which the lists are required
Ub, Wb = [], [] # initialization
if not b.isParent():

Ub.append(b)
for associate in b. associates ():

if associate . isParent ():
for child in associate . children ():

FindUbWb(b, child, Ub, Wb)
else:

Ub.append(associate)
for u in Ub:

b.computeUbVelocity(u)
for w in Wb:

b.computeWbVelocity(w)

Algorithm A.6 VbInteraction(b)

dist = 1.5∗b.length()
for colleague in b.parent.colleagues ():

if colleague .isParent ():
for child in colleague . children ():

if abs(child .center() − b.center()) > dist:
# set b’s local expansion from child’s multipoles
b.setLocalExpansion(child)

Algorithm A.7 ZbInteraction(b)

for associate in b.parent. associates ():
if not associate.isParent ():

d = 0.5∗associate.length() + b.length()
dist = b.center() − associate.center()
if (abs(dist . real ) > d) or (abs(dist .imag) > d):

# Set Xb local expansion of associate on b.
b.setXbLocalExpansion(associate)

Algorithm A.8 ComputeLocalExpansions()

for level in range(2, n levels +1):
for cell in cells [ level ]:

VbInteraction(cell )
ZbInteraction( cell )

for level in range(2, n levels ):
for cell in cells [ level ]:

for child in cell . children ():
cell .shiftLocalExpansion(child)
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Algorithm A.9 AFMMVelocity()

ComputeMultipoles()
ComputeLocalExpansions()
for cell in childless cells :

UbWbInteraction(cell)
# evaluate the local expansion inside cell and add to velocity
cell .evaluateLocalExpansion()

Algorithms A.4 and A.5 show how one can compute the Ub and Wb lists and

find their interactions on a cell b. Algorithms A.6 and A.7 show how the Vb and Zb

interactions can be computed. Algorithm A.8 shows how the local expansions are

computed and algorithm A.9 shows how the velocity is obtained. The function

ComputeMultipoles used in algorithm A.9 is defined in algorithm A.1. It is

best to read algorithm A.9 first and proceed from there in order to understand

the algorithm. The specific details of how the various expansions are computed,

shifted and evaluated are not provided since they are relatively straightforward

to implement. The pseudo-code mainly shows how the lists are computed and

illustrates the general structure of the algorithm.

Thus, it is possible to rapidly compute the velocity field using the AFMM.

A.3.6 Optimizations

It is possible to optimize the implementation of the AFMM by choosing the num-

ber of terms, p, used in the multipole and local expansions adaptively. The optimal

p depends on the amount of separation between the interacting cells. In the com-

putation of the Vb and Wb interactions, if the separation between cells is large, then

fewer terms are necessary for the same accuracy. This can be used to accelerate

the AFMM.

The choice of the maximum number of particles per childless cell, np, depends

on both the distribution of the particles and the nature of the implementation.

It is therefore hard to fix a priori. Usually, the optimal value is computed by

performing a series of numerical experiments. In a vortex method the fast mul-

tipole computation is performed at least once (and often several times) during a
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single iteration. Consequently, it is possible to adaptively find the optimal number

of particles by the following simple procedure. A reasonable first guess is made

for np. During each fast multipole computation the average CPU time used per

particle is computed. An incremental value of ±1 is fixed and np incremented or

decremented using it. During the subsequent computation, if the CPU time does

not reduce, the sign of the increment is changed. These techniques are mentioned

in Russo and Strain (1994). They are quite easy to incorporate into an AFMM

implementation and have been reported to produce speed improvements by fac-

tors of two or three. The present work does not make use of these improvements.

However, it is noted that it is easy to incorporate these in the future.

A.3.7 Numerical results

Figure A.5 compares the CPU time taken versus the number of vortices for the

direct case and the AFMM for a cluster of point vortices. The number of terms, p,

in the multipole expansions are chosen such that an accuracy of 10−6 is guaranteed.

In practice at least an order of magnitude more accuracy is obtained than the value

specified. It is to be noted that the direct velocity is computed while keeping in

mind the fact that for point vortices, there is an anti-symmetry in evaluation of

the velocity of one vortex on another. This halves the number of necessary velocity

evaluations. The figure shows that the direct method behaves as if it were close

to quadratic while the AFMM curve is clearly linear. It is also to be mentioned

that the AFMM becomes faster than the direct method when there are more than

around 100 to 200 particles (depending on the particle distribution, type of blob

etc.). In Figure A.5, two AFMM curves are plotted, one for a particle distribution

with point vortices placed randomly using uniform deviates inside a square region

and the other with particles placed on an ellipse having an axis ratio of three is

to one. It is clear that the latter will perform better since most of the cells are

well separated and an almost two-fold speed increase is seen. There is no change

in the behavior of the direct algorithm since it is completely insensitive to the

distribution of the vortices. From the results, it is evident that the AFMM is a

much faster algorithm. The ability to accurately and rapidly evaluate the velocity
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Figure A.5: Comparison of CPU time taken as the number of vortices is varied
for the direct method and the AFMM. The dotted line plotting the
AFMM results is for a case where the vortices are distributed on
an ellipse. The solid line plots the variation when the particles are
distributed randomly inside a unit square using uniform deviates.

field using the AFMM makes vortex methods much more effective and usable.

A.4 Summary

The theory and implementation of the adaptive fast multipole method (AFMM)

have been discussed in considerable detail. The O(N log N) body-cell treecodes

have also been described in order to facilitate easier understanding of the AFMM.

A different approach to the AFMM algorithm was proposed that does not require

the explicit computation of the Xb list as done in the original work of Carrier et al.

(1988). This simplifies the implementation of the method.
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APPENDIX B

COMPUTATION OF DIAGNOSTIC

QUANTITIES

Diagnostic quantities serve three important purposes. They enable comparison

of computed results with experimental and other computational data. They can

be used to check the accuracy of the simulation. They are also directly useful in

themselves. For example, the distribution of forces on a body is a diagnostic and

is also useful to the engineer. This chapter discusses how several of the diagnostic

quantities are computed in the context of a vortex method. Some commonly used

quantities computed in numerical simulations are the following.

1. Forces and moments.

2. Vorticity field.

3. Streamlines, streaklines and path lines.

4. Velocity field.

5. Separation points.

6. Surface vorticity distribution.

7. Pressure field or surface pressure distribution.

Some of these are not easy to compute when a vortex method is used. The

important quantities used in the present work are discussed in the subsequent

sections.

B.1 Computation of diagnostics

B.1.1 Forces and moments

Computing the force on an arbitrary geometry using a vortex method can be

somewhat involved. Two methods are discussed and used in the present work.



The first approach is to determine the forces on the body using the idea of vortex

momentum. The difficulty with this approach is that only the total force can be

computed. The distribution of the forces is not available. The pressure force and

skin friction forces cannot be separated. Koumoutsakos and Leonard (1995) and

Lin et al. (1997) discuss another scheme where the pressure and skin friction can be

obtained for different shapes. The distribution of the forces can also be obtained.

This method is more complicated than the the vortex momentum approach. Both

of these approaches are discussed in the following two sections.

B.1.2 Force computation: vortex momentum

The vortex momentum or hydrodynamic impulse is defined as follows:

~I = (Ix, Iy) = ρ

∫

R2

~r × ~ω dx dy

= ρ

N∑
i=1

~ri × Γi
~k , (B.1)

where ρ is the density of the fluid and ~ri is the position of a vortex element having

circulation Γi. For a two dimensional flow the vorticity is along the z axis and

hence along ~k. The force can be obtained from the vortex momentum as follows:

~F = −d~I

dt
. (B.2)

Due to the stochastic nature of the RVM, the computed vortex momentum

tends to have small high frequency oscillations. The noise has a broad band

spectrum (white noise) and hence cannot be easily filtered out. When the ~I versus

t curve is differentiated to obtain the load, spurious and very large oscillations are

seen in the load. Fig. B.1 plots Ix and Iy for the flow past an impulsively started

circular cylinder at Re = 3000. The solid line plots Ix and the dashed line plots

Iy. The values of ~I are available in intervals of 0.01 seconds. At the resolution

shown in the figure no oscillations are apparent. Fig. B.2 shows a zoomed view of
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Figure B.1: Vortex momentum versus time for flow past an impulsively started
cylinder at Re = 3000. The solid line plots Ix and the dashed line
plots Iy.

the Ix versus time curve. As can be seen, there are significant oscillations at this

resolution. Differentiating this curve using a centered difference with ∆t = 0.01

will naturally produce extremely noisy forces as evidenced in Fig. B.3.

Many approaches can be used to obtain smooth and fairly accurate loads from

this noisy data. The simplest approach is to use a sliding window average of the

data. The value at each point is replaced by the average of the values in the

vicinity of the point. Fig. B.4 plots the load, Fx versus time for a few different

window sizes. The load is obtained by performing a central difference of the vortex

momentum. At the end points a forward and backward difference is used. The

black curve uses a 11 point average and the green a 21 point average. The red

curve is the case of a 11 point average applied five times to the averaged data. As

can be seen, the averaged data captures the trends in the load and eliminates the

noise seen in Fig. B.3.

Another approach to obtain loads from the noisy data is to smooth the vortex

momentum data using a piecewise least squares fit of the data. The data is split

into several intervals. In each interval a polynomial of order n is fit to the data

with a reasonable amount of overlap between intervals. This piecewise polynomial

is then differentiated to obtain the load. Fig. B.5 plots the variation of Fx versus
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Figure B.2: Vortex momentum versus time for flow past an impulsively started
cylinder at Re = 3000. This is a zoomed view of the Ix curve shown
in figure B.1.
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Figure B.3: Force along x axis for flow past an impulsively started cylinder at
Re = 3000. The force was obtained by taking central differences
directly on the data.
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Figure B.4: Force along x axis obtained by using a sliding window average.

time. The force is obtained using a least squares fit with a 7th order polynomial for

each 0.5 second interval of data. To smooth the edges between the intervals, each

polynomial was made to overlap with 50% of the data from the adjacent intervals

of data. In the overlapping region, the average of the overlapping polynomials is

taken. The least square solution was obtained using SciPy’s (Jones et al., 2001–)

optimize routines. As can be seen, the curve is much smoother than that seen in

Fig. B.3. Also plotted (dashed line) is the load obtained by a sliding average with

a window size of 11 that is applied 5 times.

The approaches described above produce results that match the data reason-

ably well. However, the choice of the averaging window size, order of polynomial,

overlap etc. are done in an ad-hoc manner. In order to choose these parameters

systematically, a known curve is considered and noise is added to it. The proce-

dures discussed above are applied to this data and the smoothed data is compared

to the exact curve. The curve chosen is given as,

y(x) = (cos(2x) + cos(4x))(1/x− 1) + x/10 + 2. (B.3)

The reason for this choice is that the curve is very similar to the loads that one

would expect for the flow past an impulsively started cylinder. The curve is

singular near x = 0 and also exhibits a periodic behavior with steep gradients.
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Figure B.5: Force along x axis. The solid curve is obtained using a least squares fit
with a 7th order polynomial for each 0.5 second interval of data with
50% overlap. The dashed curve is obtained using a sliding average
(window size = 11, applied 5 times).

This curve is sampled on 2990 points along x in the interval 0.1 ≤ x ≤ 30. This

function is plotted in Fig. B.6. To this sampled curve, random noise, generated

using uniform deviates in the range (−0.5, 0.5), is added. Different schemes are

used to determine the actual curve from the noisy data and then the results are

compared with the known curve. The error E1 is computed as,

E1 =

∑N
i=0 | ỹi − yi |

N
, (B.4)

where ỹi is the computed value (after smoothing), yi is the exact value and N is

the number of sample points. The error E2 is computed as,

E2 =

√∑N
i=0(ỹi − yi)2

N
. (B.5)

Using these it is possible to measure how well the techniques approximate the

actual curve.

Consider the case of using the sliding window technique on the noisy data.

Different window sizes are considered and for each window size the sliding average

is applied various number of times. Figs. B.7 and B.8 plot the errors E1 and E2
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Figure B.6: A test function used to obtain the best scheme for removing noise
from data.

respectively as the window size is changed. It is clearly seen in both the figures,

that applying the averaging several times increases the error. It is also seen that

the optimal window size depends on how the error is measured.

It is to be mentioned that if the amplitude of the noise increases by a factor

of two the optimal window size changes again. The optimum size for the E1 error

changes from 23 to 29 and the E2 error changes from 15 to 23. However, applying

the average once continues to produce lower errors than when a smaller window

is applied many times.

Considering the piecewise polynomial interpolation, it is found that there are

a few parameters that can be varied. The order of the polynomial to be chosen,

the size of each piece that is approximated using the polynomial and the amount

of overlap between pieces. The amount of overlap is fixed at 50%. This seems

a fairly reasonable choice. The overlapping data between two of the piecewise

polynomials is not averaged. The order of the polynomial is varied from 1 to 7.

The number of points per piece is varied from 10 to 50 in steps of 5. Figs. B.9 and

B.10 plot the errors E1 and E2 as the order of the polynomial is varied along the

x-axis. The various curves plotted are for different number of points per chosen

interval of the approximated data. It is clear that both E1 and E2 are small for

the case where the order of the polynomial is around 5 with around 35-45 points
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Figure B.7: Error (E1) for the sliding window average with different window sizes
applied various number of times.
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Figure B.8: Error (E2) for the sliding window average with different window sizes
applied various number of times.
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Figure B.9: Error (E1) for piecewise polynomial least squares fit of the data as
different order polynomials are used and as the number of points in
the interval are varied.

per piecewise polynomial. It is observed that the errors are largely insensitive

once a 4th or 5th order polynomial is used. It is also seen that errors are smaller

as compared to the sliding window average case. Further, it is noted that these

results do not change much when the amplitude of the noise is doubled, i.e. the

best solution is still obtained with a piecewise polynomial of order around 5 with

35-45 points per interval.

One can expect that the number of points to be chosen for each piecewise poly-

nomial depends on the nature of the curve being approximated and the number of

points used to sample the entire curve. For example if the curve is approximated

with 1000 points one would expect that the number of points per interval used in

the interpolation would be different from the case when the number of sampled

points is say 2000. Therefore, the effect of varying the number of points per piece-

wise polynomial for different number of sample points is studied. Fig. B.11 plots

the variation of error E2 versus number of points per piecewise polynomial for

different number of sample points. It is clearly seen that as the number of sample

points doubles, the number of points per piece necessary for the minimum error

approximately doubles. This indicates that for generic data there is an element

of uncertainty in the choice of the right number of points. No experimentation
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Figure B.10: Error (E2) for piecewise polynomial least squares fit of the data as
different order polynomials are used and as the number of points in
the interval are varied.

can be done in these cases because the exact curve is not known. However, the

user could visually investigate if the curve appears smoother as different number

of points are used. It is also possible to use the sliding average to obtain a rough

guideline for the optimal number of points to be used per piecewise polynomial.

From these results it is clear that using a piecewise polynomial least square fit

is the best and most consistent option to extract the actual data from noisy data.

However, the method is a little computationally expensive.

It is possible to use the Discrete Fourier Transform (Bracewell, 1986) of the

given data and filter out the noise. The filtering can be done in either Fourier

space by using a low pass filter or in real space by convolving the data with the

Fourier transform of the appropriate low-pass filter. Computing running averages

corresponds to convolving the time data with a gate filter, which corresponds to

multiplying the Fourier transform of the data with an appropriately scaled sinc

function in the Fourier domain. It is possible to use better low pass filters with

suitable windowing functions. However, after considerable amount of experimenta-

tion it was found that the piecewise polynomial least square fit approach described

above produced the best results with the least error. Computationally, it is much
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Figure B.11: Error (E2) versus different number of points per piece as the number
of sample points on the curve is varied. Piecewise polynomials are
fit to the data using a least squares fit.

faster to use convolution than to use a piecewise polynomial fit. Therefore, it is

sometimes useful to use a Gaussian filter to rapidly obtain smooth plots. These

plots can be used as a first approximation and also to fine tune the polynomial fit

parameters.

It is to be noted that if one is given a noisy curve then one can estimate the noise

levels by smoothing the data using an appropriate method and then finding the

average difference between the smoothed and noisy curves using equation (B.5).

In the present work this idea is used to measure the noise levels in the curve.

B.1.3 Force computation: pressure and skin friction

Computing the force using the vortex momentum (or hydrodynamic impulse) pro-

vides only the total force and not the distribution of the force. In order to find

the force distribution, the pressure and skin friction forces on the body are to be

computed.

On the surface of the body, the boundary layer equations are assumed valid
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and it can be shown that the shear stress is,

τwall = νωwall, (B.6)

along the tangential direction on the surface. ωwall is the vorticity at the surface

of the body.

The computation of the pressure is more involved. The approach of Lin et al.

(1997) is used to compute the pressure. Consider the momentum equation as given

in equation (2.2),

D~V

Dt
= −1

ρ
gradp + ν∇2~V ,

where p is the pressure and ~V is the velocity. Let ên, ês be the local normal and

tangential directions along the body surface respectively such that ên = ês × k̂,

where k̂ is the unit vector out of the plane. Now taking the dot product of the

momentum equation with ês gives,

Dus

Dt
= −1

ρ

∂p

∂s
+ ν∇2us,

where us is the velocity component along the tangential direction ês. When this

equation is specialized to the surface it can be seen that,

Dus

Dt
= −1

ρ

∂p

∂s
− ν

∂ω

∂n
.

For the case of a non-accelerating, rigid body the left hand side is zero and the

pressure can be obtained as,

1

ρ

∂p

∂s
= −ν

∂ω

∂n
. (B.7)

If the body is accelerating, this equation changes due to the inclusion of the

acceleration terms. The term on the right hand side corresponds to the rate

of creation of vorticity at the boundary. Hence, if a vortex sheet of strength γ

is released at a given time on the surface and ∆t is the time step used in the
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Figure B.12: Illustration of sheet inside a viscous box.

computation,

ν
∂ω

∂n
=

γ

∆t
. (B.8)

Hence, using equations (B.8) and (B.7) the pressure distribution can be obtained.

Assuming the pressure at a particular point on the surface, equation (B.7) can

be easily integrated to obtain the pressure distribution on the body. Using the

pressure distribution the pressure force can be computed using,

~Fp =

∮
−pênds. (B.9)

Similarly, the shear stress can be integrated to produce the net frictional force on

the body.

Computationally, finding the wall vorticity (ωwall) is not trivial. Koumoutsakos

and Leonard (1995) generate a body fitted grid and solve for the vorticity on the

wall by computing the stream function on the grid. In the present work the

need for the grid is avoided. Instead a much simpler scheme is used. Since the

present work employs vortex sheets in a thin numerical layer around the body, the

sheets are used to determine the vorticity at the wall. The vorticity of the sheets

is represented by Gaussian smoothing functions. As suggested by Fogelson and

Dillon (1993), the smoothing parameter of the Gaussian, ε, is chosen as,

ε = CN−q, (B.10)

where C is a constant, q = 0.2 and N is the number of sheets used to represent

the vorticity. Consider a viscous box1 as shown in Fig. B.12. The height of the

viscous box is equal to the numerical layer height and the height of a sheet is h.

1The viscous box is defined in section 5.1.1.
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The vorticity due to a collection of sheets having strength, γj, and height, hj, is

computed as,

ωwall =
N∑

j=0

2
γj

ε
√

π
e−h2

j/ε2 . (B.11)

The factor of 2 in the above equation arises since one must consider the image

sheets (of the same sign) in order to obtain the correct vorticity at the wall. Image

vortices must be considered because the smoothing of the vorticity using Gaussian

smoothing functions is incorrect in the vicinity of the solid wall. The part of the

Gaussian piercing the solid wall must be “reflected” about the wall. This reflected

vorticity can be thought of as arising from an equivalent image sheet of the same

sign at a height of −hj. Therefore this image sheet can be accounted for by

multiplying the value by a factor of two.

The optimal value of C can be obtained by considering Stokes’ first problem.

For this problem, the exact wall vorticity due to a unit jump in the velocity can

be shown to be,

ωwall(t) =
1√
πνt

.

After performing a few numerical experiments it was found that C = 3
√

2ν∆t

produced good results. Fig. B.13 plots the variation of ωwall versus t, when N =

100 for different viscosities. The numerical layer height chosen is hnum = 3
√

2ν∆t.

The computed results closely follow the exact curve. The ν = 0.001 curve is noisy.

However, as the number of particles is increased, the noise reduces. This is seen in

Fig. B.14. Hence, using this approach it is possible to compute the wall shear stress

with a reasonable amount of accuracy. In the computations for the flow past a

circular cylinder the choice of hnum arises out of different considerations and using

it as such works well in practice. The results in chapter 8 clearly demonstrate that

this approach works well.

Finding the vorticity flux is fairly easy using equation (B.8) and the newly

created sheets at each time step. The only difficulty with this approach and the

hybrid vortex sheet/blob method is that the vorticity flux variation in time can

be quite erratic. For the case of the flow past an impulsively started cylinder at

t = ∆t a large number of sheets will be released to offset the initial slip. If ∆t
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Figure B.13: ωwall versus time for Stokes’ first problem. The exact and computed
results are plotted for different kinematic viscosities, ν, when N =
500.
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Figure B.14: ωwall versus time for Stokes’ first problem. The exact and computed
results are plotted for different numbers of sheets used, N , when
ν = 0.001.
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is sufficiently small such that at t = 2∆t the sheets have not moved enough to

create new sheets, then no new sheets will be created. This situation is highly

likely in practice since ∆t must be small enough to avoid a large motion for the

particles. Therefore, naively computing the flux using this approach will result in

a zero pressure distribution. This is incorrect and to correct this behavior it is

better to compute the flux as the average of the present value and the previous

value. This produces better results.

Unlike the frictional force, the pressure force curve is usually noisy like the

force curve obtained from the vortex momentum. Therefore, the pressure forces

need to be smoothed. The same techniques developed in section B.1.2 are used

for this purpose.

The vorticity on the body and flux of the vorticity can also be plotted along the

length of the body. Chapter 8 presents many results using the approach developed

here. As seen there, the quality of the curves is very acceptable.

B.1.4 Vorticity distribution

This is the direct output of any vortex based code. The vortex method produces

an unstructured collection of points representing the vorticity. Such data is not

readily amenable for analysis or visualization since there is no structure in the

organization of the particles. Due to the random walk of the particles, it is highly

likely that the particles overlap one another. This overlapping makes a triangula-

tion of the points difficult. In order for the data to be used for visualization, or

further analysis, this vorticity needs to be interpolated to a grid that has a well

defined structure.

Interpolating the vorticity from an unstructured collection of points onto a

regular h×h grid is a common requirement and one for which solutions exist. The

interpolation scheme is chosen such that p moments of the vorticity are conserved.

Koumoutsakos and Leonard (1995) use a second order scheme (p = 2) where

the circulation and two higher moments are preserved. In the vicinity of a wall

the interpolation needs to be performed with care since no vorticity should be
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interpolated to a grid point that is separated from the vortex by a solid wall.

Ploumhans and Winckelmans (2000) describe a third order interpolation scheme

(preserves 3 moments apart from circulation) in the presence of a boundary.

In the present work both a second and third order interpolation scheme have

been implemented. The scheme is capable of handling arbitrary geometries. The

approach used is essentially the same as that detailed by Ploumhans and Winck-

elmans (2000). The only significant difference is that for complex geometries an

attempt is made to perform the best possible interpolation given the constraints

of the grid and geometry. The present implementation is robust and can handle

situations where the grid is poor and the geometry is complex.

The basic idea is simple. A one dimensional interpolation kernel is used. The

circulation of a vortex blob or sheet is first distributed to temporary particles cre-

ated on the nearest grid lines parallel to the x-axis (i.e. a y = const line). Then, the

circulation of each of the temporary particles is distributed to grid points parallel

to the y-axis (i.e. x = const line). This is called an XY distribution. The same

process can be applied along the y axis first and then along the x axis resulting

in a Y X distribution. In regions of space where there are no boundaries the XY

and Y X distributions are equivalent. In regions where there are boundaries, each

of the distributions are assigned penalties depending on the interpolation scheme

used. The best of the two schemes is chosen. More details are provided below.

The interpolation kernels are first discussed followed by a detailed description of

the algorithm.

A centered interpolation kernel of order p along the x co-ordinate is given as

Λp(x). A decentered kernel is denoted by Λ′p(x). Consider a particle located at x

such that −1/2 ≤ x ≤ 1/2. The centered Λ3(x) interpolation kernel is given as,

Λ3(x) =





(3− 2x)(4x2 − 1)/48 to particle at -3/2

(1− 2x)(9− 4x2)/16 to particle at -1/2

(1 + 2x)(9− 4x2)/16 to particle at 1/2

(3 + 2x)(4x2 − 1)/48 to particle at 3/2.

(B.12)
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A decentered third order kernel Λ′3(x) is given as,

Λ′3(x) =





(1− 2x)(2x− 5)(2x− 3)/48 to particle at -1/2

(2x− 5)(2x− 3)(1 + 2x)/16 to particle at 1/2

(1− 2x)(2x− 5)(1 + 2x)/16 to particle at 3/2

(1− 2x)(3− 2x)(1 + 2x)/48 to particle at 5/2.

(B.13)

A centered second order kernel Λ2(x) is given as,

Λ2(x) =





x(x− 1)/2 to particle at -1

(1− x2) to particle at 0

x(1 + x)/2 to particle at 1.

(B.14)

A decentered second order kernel Λ′2(x) is given as,

Λ′2(x) =





(x− 2)(x− 1)/2 to particle at 0

x(2− x) to particle at 1

x(x− 1)/2 to particle at 2.

(B.15)

A first order interpolation kernel Λ1(x) is given as,

Λ1(x) =





(1− x) to particle at 0

x to particle at 1
(B.16)

The grid used for the interpolations are illustrated in Fig. B.15.

The interpolation algorithm works as follows. The size and grid spacing of the

grid is determined by the user.

1. Construct a mesh given the user parameters.

2. Consider the panels that constitute the solid walls and identify the cells of
the grid that the panels pass through. Store information on which panel
(corresponding to the geometry) each cell contains.

3. For each vortex blob/sheet, perform the following:

(a) Perform an XY distribution which proceeds as follows:

i. Find the cell that contains the particle.
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Figure B.15: Grid in relation to the interpolation schemes used.

ii. Distribute the vorticity of the particle along the X direction to
temporary particles placed on the nearest grid lines. Care is to
be taken to avoid distributing vorticity to temporary particles that
are across a solid wall.

iii. Distribute each temporary particle to temporary particles at the
grid points along the Y direction while considering the boundaries.

iv. Compute the average penalty (discussed below) PXY , for all the
temporary particles created at the grid points.

(b) Perform a Y X distribution which proceeds as follows:

i. Find the cell that contains the particle.

ii. Distribute the vorticity of the particle along the Y direction to
temporary particles placed on the nearest grid lines while taking
care of boundaries.

iii. Distribute each temporary particle to temporary particles at the
grid points along the X direction while considering the boundaries.

iv. Compute the average penalty (discussed below) PY X , for all the
temporary particles created at the grid points.

(c) Choose the scheme (PXY , PY X) that has the least penalty. If they have
the same penalties use the average of both schemes.

4. For each grid point, add the strength of the temporary particle that is located
on it.

This scheme thus interpolates the vorticity onto the mesh using the best pos-

sible scheme given a grid, geometry and vorticity distribution. In the best case as
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Figure B.16: Illustration of various parameters used for interpolation.

many as three moments are conserved.

When distributing the strength of the particle to the temporary particles at

the grid points, a penalty is imposed for each type of interpolation used. If the

Λ3 or Λ2 interpolation is used, then the penalty is zero. If Λ′3 or Λ′2 are used

the penalty is 1. If Λ1 is used the penalty is 2. If nearest point interpolation is

used a penalty of 3 is assigned. The penalties along each direction accumulate,

so a particle with a decentered interpolation along both x and y will have a total

penalty of 2.

The strength of the particle is distributed to the temporary particles in the

following manner:

1. Find the cell that contains the particle.

2. Consider the line along which the particle strength is distributed (horizontal
when along X or vertical when along Y ). This line is called “the line of dis-
tribution”. Find the intersection of the line of distribution with the nearest
panels.

3. Find the closest intersection of the line with the geometry on the left and
right side of the particle.

4. Depending on the distance of the particle to the nearest wall on the left and
right choose an appropriate scheme of distribution.

Consider Fig. B.16 which illustrates a simplified example of a particle, P , whose

vorticity is to be distributed along the x-axis. The grid size is h. Consider the

case where a third order scheme is used for interpolation. Let x0 be the location

of the nearest grid point to the left of the particle. Let the grid point associated
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Figure B.17: Interpolation for a point P using the XY distribution. Temporary
particles are first created along the y = const. grid lines (along the
dashed lines) and these particles are then distributed to the grid
points along the x = const. lines.

with x0 be denoted as g0. Let dp be the distance to the nearest intersection to a

wall on the right side of the particle from the point x0. Similarly, let dn be the

distance to the nearest intersection to a wall on the left of the particle from x0.

That is, dp and dn are measured with respect to x0. Let the position of the particle

with respect to x0 be x′. The third order interpolation equation (B.12) distributes

vorticity when −1/2 ≤ x ≤ 1/2. Hence x = x′/h − 0.5. To clarify the discussion

here is a concrete example. Let the particle be located at xp and let x0 and g0 be

known. Let xli and xri be the closest left and right intersection points. Then:

x′ = xp − x0

dp = xri − x0

dn = x0 − xli

x = x′/h− 0.5

The pseudo-code embodying the distribution of the vorticity to the grid points

is given in algorithm B.1. In the pseudo-code, the term “positive direction” indi-

cates distribution to points to the right of the grid point (or above if the distri-
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bution is along the y axis) and “negative direction” indicates distribution to the

points on the left (or below). The algorithm performs the best possible interpo-

lation given the constraints of the grid and geometry. When no interpolation is

possible (the function returns false) the total penalty is incremented by 10. The

average penalty of all the particles is computed and the best scheme is used as

described earlier.

The algorithm is also illustrated for one particular case in Fig. B.17. In the

figure, the XY distribution for a particle P is illustrated. Temporary particles are

first created along the y = const. lines using a Λ′3 distribution. These temporary

particles are then distributed to temporary particles along x = const. (which are

grid points) using appropriate distribution schemes.

Algorithm B.1 DistributeVorticity()
if dn > 2h then

Case1()
else if dn > h then

Case2()
else if dn > 0 then

Case3()
else

Case4()
end if
return True

Algorithm B.2 Case1()
if dp > 2h then

Use Λ3(x), eqn. (B.12), and distribute about g0. Penalty = 0.
else if dp > h then

Use Λ′3(x), eqn. (B.13), and distribute about g1 in the negative direction. Penalty
= 1.

else
Use Λ′2(x), eqn. (B.15), and distribute about g0 with x = (x + 0.5). Negative
direction. Penalty = 1.

end if

Using this scheme it is possible to interpolate the vorticity onto a h × h grid

in the presence of complex geometries. This interpolated data can then be used

for visualization (contouring) or for further analysis. The code developed for this

task has been tested systematically with a suite of unit tests written in C++

using CppUnit (Feathers et al., 2000–). Some of the critical functions have been
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Algorithm B.3 Case2()
if dp > 2h then

Use Λ3(x), eqn. (B.12), and distribute about g0. Penalty = 0.
else if dp > h then

Use Λ2(x), eqn. (B.14), and distribute about g0 with x = (x + 0.5). Penalty = 0.
else

Use Λ1(x), eqn. (B.16), and distribute about g0 with x = (x + 0.5) in the negative
direction. Penalty = 2.

end if

Algorithm B.4 Case3()
if dp > 3h then

Use Λ′3(x), eqn. (B.13), and distribute about g0. Penalty = 1.
else if dp > 2h then

Use Λ′2(x), eqn. (B.15), and distribute about g0 with x = (x + 0.5) in the positive
direction. Penalty = 1.

else if dp > h then
Use Λ1(x), eqn. (B.16), and distribute about g0 with x = (x + 0.5) in the positive
direction. Penalty = 2.

else
Do nearest point interpolation. Penalty = 3.
{Find nearest grid point and set its vorticity to be equal to the particles vorticity.}

end if

Algorithm B.5 Case4()
if dp > 3h then

Use Λ′2(x), eqn. (B.15), and distribute about g1 with x = (x− 0.5) in the positive
direction. Penalty = 1.

else if dp > 2h then
Use Λ1(x), eqn. (B.16), and distribute about g1 with x = (x− 0.5) in the positive
direction. Penalty = 2.

else if dp > h then
Do nearest point interpolation. Penalty = 3.

else
return False
{Bad grid and geometry combination. No nearby grid point.}

end if
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tested rigorously. As a basic test, various distributions of vortices in free space

are interpolated onto regular grids with varying h values. The first three moments

of the resulting distribution are compared with the exact moments. The different

distributions of particles used in the testing are given below.

• A uniform distribution of particles inside a square with the vorticity of each
particle being 1;

• a Gaussian distribution of particles;

• particles inside a square with positions generated using uniform random
deviates with randomly generated vorticity;

• particles inside a square region with positions generated using Gaussian de-
viates and random vorticity (uniform deviates).

In order to test the ability of the code to handle boundaries, the case of a circle

placed inside a square body is considered. Vortices are placed between the circle

and the square using uniform random deviates and random vorticity values. The

algorithm must not distribute vorticity outside the square and inside the circle.

This is verified. The conservation of the two higher order moments are checked.

Also considered is the case of a circle placed inside a rhombus. In this case, when

the grid spacing is large and poorly chosen, it is possible that some vortices cannot

be interpolated at all. The moments are not conserved in these cases. However,

the algorithm should not distribute vorticity outside the rhombus and inside the

circle. This is verified. These tests prove invaluable to find bugs in the algorithm.

As seen above, the algorithm can be quite complex. The unit tests make it much

easier to find bugs and document them when found. It also builds confidence

and allows the programmer to change the implementation easily. This is because

changes in implementation can be easily validated to produce the correct behavior

by the tests.

Chapter 8 presents several vorticity contours for the impulsively started flow

past a circular cylinder using this approach. Choosing the optimal mesh size, h,

is not straight forward. This is addressed in the next section.
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B.1.5 Optimal smoothing of vorticity

Fogelson and Dillon (1993) consider a one dimensional diffusion problem with a

small diffusion coefficient. At t = 0, N particles are introduced within the sup-

port of the initial condition. The particles together discretize the initial function.

Diffusion is then simulated using a random walk. They show that good results

can be obtained if an optimal amount of smoothing is used. Specifically, if the

initial condition is given as f(x) and hp is the spacing of the particles, each particle

located at xj is associated with a value of hpf(xj). The function is approximated

at later times by,

f(x, t) =
N∑

j=0

fjhp

ε
√

π
e(x−xj)

2/ε2 , (B.17)

where ε is given in equation (B.10) as ε = Ch−q. Fogelson and Dillon (1993)

choose the value of C to be fixed at 1 and suggest using the value of q = 0.2.

For the problems they solve, they show that using this approach produces very

good results. They prove convergence as N → ∞ and ε → 0. They also show

convergence with numerical experiments as N increases and the viscosity drops.

This is an important result and can be used to determine the optimal value of

h used to interpolate the vorticity of vortex blobs to the grid as discussed in the

previous section. However, there are three issues that need to be addressed before

this approach can be used. The first issue is to determine the optimal value of C

for a general problem. The second problem is to ascertain if the approach works

when the data is interpolated in the manner done in the previous section. The

third is to study how Laplace smoothing of the results affects the data and how

it relates to optimal smoothing.

To address the choice of optimal C, the evolution of a Gaussian is studied

for different viscosity values while varying the number of particles. As done by

Fogelson and Dillon (1993), the function chosen is given as,

f(x) =





1
σ
√

2π
e−

x2

2σ2 −5σ < x < 5σ

0 otherwise

Different values are chosen for σ. The exact solution for this problem is known.
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Figure B.18: Smoothed function as N varies, with ν = 0.1 and σ = 1 at t = 10.

The solution remains a Gaussian with the value of σ(t) given as σ(t)2 = σ(0)2+2νt,

where ν is the viscosity used in the diffusion equation. After performing numerical

experiments it is found that the best choice for C is a length scale associated with

the function at the time of evaluation. Thus we choose C = 2σ(t) and q = −0.2.

This approach works even when the viscosity is quite large.
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Figure B.19: Smoothed function as N varies, with ν = 0.001 and σ = 0.1 at t = 10.

Fig. B.18 plots the approximate function at t = 10 for the case where ν = 0.1,

∆t = 0.5 and σ = 1. Fig. B.19 plots the approximate function at t = 10 for the

case where ν = 0.001, ∆t = 0.5 and σ = 0.1. As can be seen, the approximating
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function approaches the exact solution as N increases. Though the viscosity is

quite large in the case of Fig. B.18, the results continue to remain good. Despite

the fact that the length scale in each figure has changed by an order of magnitude

the agreement is good. Thus, the present approach of using C = 2σ(t) works well.

It is noted that if C was chosen significantly differently, the agreement was worse.

Too small a C produced noisy curves and too large values produced smooth curves

which had a larger error as compared to the exact solution.

Fig. B.20 plots the function obtained using linear interpolation such that the

grid spacing h = ε as chosen for the smoothing case. As can be seen, the results are

similar to Fig. B.19. The results for second order interpolation are also similar. If h

is chosen significantly smaller, then the results are oscillatory as is the case with the

smoothing case. However, there is one important difference between interpolation

and smoothing. In smoothing, as C (or ε) is increased, the curve becomes smoother

but is more inaccurate. With interpolation, the accuracy remains more or less

the same. Fig. B.21 demonstrates this when the smoothing parameter and the

interpolation grid spacing is approximately twice the optimal value (ε = h = 0.14)

with N = 2500. Therefore, interpolation appears to be a robust method to obtain

the vorticity field given a distribution of vortex blobs. The minimum allowable grid

size can be determined from the work of Fogelson and Dillon (1993) as h = CN−0.2

with C chosen close to the length scale of the problem.

If the grid size, h, is chosen to be smaller than the optimal value, hopt, one must

resort to using some kind of smoothing to get good results. Laplace smoothing

can be used for this purpose. Laplace smoothing works by replacing the value, yj,

at a grid point j by the following,

yj = (yj−1 + 2yj + yj+1)/4.

This smoothes out noisy oscillations in the curve. This smoothing can be repeat-

edly applied to remove noise. Consider the diffusion of the Gaussian used earlier

with ν = 0.001, N = 2500 and σ = 0.1. Second order interpolation is used to

approximate the function at a time t = 10. Fig. B.22 plots the interpolated func-
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Figure B.20: Approximate function obtained using linear interpolation as N
varies, with ν = 0.001 and σ = 0.1 at t = 10.

-0.5 0 0.5
x

0

0.5

1

1.5

2

2.5

f(
x)

Exact
Smoothed
Interpolated

Figure B.21: Approximate function obtained using smoothing and second order
interpolation using twice the optimal values of ε and h. ν = 0.001,
σ = 0.1, t = 10 and N = 2500.
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Figure B.22: Approximate function obtained using second order interpolation
with different grid spacing. ν = 0.001, σ = 0.1, t = 10 and N = 2500.

tion with no Laplace smoothing using the optimal value of h = hopt and a value

eight times smaller. Clearly, the smaller h value produces very poor results. After

numerical experimentation it is found that if the Laplace smoothing is applied S

times with,

S = 22n−1, (B.18)

where n = log(hopt/h)/ log(2), excellent results are obtained. Fig. B.23 plots the

results for different grid spacings using Laplace smoothing applied, S times with

hopt = 0.072. As can be seen, an optimal amount of Laplace smoothing removes

the noise and produces curves that are very close to the optimally interpolated

one. Thus interpolation along with Laplace smoothing is a robust and fairly simple

way to obtain the approximate curve. Laplace smoothing is very useful when the

grid spacing is much less than the optimal amount. These results also highlight

the importance of hopt.

The situation is similar for a two dimensional diffusion problem. C is again

best chosen as a length scale relevant to the problem. The optimally smoothed

solution produces good approximations to the exact solution. However, when
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Figure B.23: Approximate function obtained using second order interpolation
along with Laplace smoothing for different grid spacings h. ν =
0.001, σ = 0.1, t = 10, N = 2500 and hopt = 0.072.

using Laplace smoothing it is found that choosing S such that,

S = 3 (22n−2), (B.19)

where n = log(hopt/h)/ log(2), produces better results. To demonstrate these

results, a point vortex of unit circulation placed at the origin is considered at t = 0.

It is discretized into N = 2500 particles carrying equal amounts of circulation. The

two-dimensional diffusion problem is solved using the random walk method. The

kinematic viscosity, ν is 0.001 and ∆t = 0.5. At t = 10, the vorticity along

the x axis is plotted and compared with the exact results. The interpolation is

performed using the third order interpolation scheme described in section B.1.4.

Fig. B.24 plots the results as different values of h are used. For the cases where

h < hopt, Laplace smoothing is performed with S as specified in equation (B.19).

As seen, the results are in good agreement with the exact solution. Thus, it is

possible to obtain smooth approximations to the function when using random

walks to simulate diffusion.

For the flow past a cylinder it is possible to estimate both the optimal C and
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Figure B.24: Vorticity along the x axis for a two-dimensional diffusion problem
along with Laplace smoothing for different grid spacings h. Third
order interpolation is used. ν = 0.001, t = 10, N = 2500 and
hopt = 0.0592.

N values as follows,

C =
√

2πRδ,

where R is the radius of the cylinder and δ is the core-radius of a blob. This value

is also equal to the area of the numerical layer. N can be chosen as

N =
V∞
γmax

Np,

where V∞ is the free stream velocity, γmax is the maximum vorticity of each released

vortex sheet and Np is the number of panels used to discretize the cylinder. This

value is essentially an order of estimate for the number of sheets shed for a slip

velocity of V∞. These values give an estimate for the optimal smoothing to use.

Thus it is possible to employ an optimal amount of smoothing and obtain the

vorticity field. The plots in chapter 8 employ these estimates to optimally smooth

the vorticity. The MayaVi (Ramachandran, 2001) visualization software is used

to generate the plots. The results are clearly good.
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B.1.6 Streamlines, streaklines and path lines

These are relatively easy to compute and plot. They are not the best indicators of

accuracy because they are integral quantities. However, they are useful diagnostics

and are widely used.

Streamlines

It is possible to compute the streamlines in one of two ways.

1. Compute the velocity field at a given instant of time, seed the flow with
tracer particles and integrate these particles in the flow with the known
velocity field. This approach however introduces errors of its own.

2. Compute the stream function due to all constituents and contour the data
to produce the streamlines.

The second approach is used in the present work. The stream function is

computed using a fast multipole method. Since Anderson’s fast multipole without

multipoles method (Anderson, 1992) uses the stream function when applied to

vorticity, this scheme is used to compute the stream function. Anderson’s scheme

has been implemented for both the vortex blobs and the vortex panels. The

application of the method to cubic panels is described in section 4.3.2.

Inside the core of the blobs, the stream function is computed using the known

exact stream function. The stream function for the Chorin, Saffman, and Krasny

blobs are easy to derive. The implementation of the stream function for the higher

order blobs (Gaussian and Beale Majda blobs) is involved due to the integrals that

need evaluation. Hence, the stream function of the Saffman blob (also known as

the Rankine blob) is used for these blobs for the near-field interaction. Outside

the core-region, these blobs are treated like point vortices. For vortex panels, the

stream function is known and this is used for the near-field computation. The

far field interaction is performed using Anderson’s scheme (Anderson, 1992) as

applied to the panels.

Handling the vortex sheets is not straightforward. Currently the following sim-

ple approach is used. Each sheet is converted to an equivalent blob of appropriate
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strength and core radius. If the converted blob is less than one core radius from

the surface of the body it is moved such that the distance to the wall is equal to

the core radius. The stream function due to these blobs is then computed using

the AFMM.

The code to generate the streamlines is tested using a suite of unit tests written

in C++ using CppUnit (Feathers et al., 2000–). The tests check the most impor-

tant functions that are responsible for computing and transferring the multipoles.

Both the velocity and streamlines generation are tested.

Chapter 8 shows several plots of the streamlines. The results are in excellent

agreement with other computations.

Streaklines and pathlines

These are not plotted or computed at the present time but are not hard to com-

pute. The only difficulty with these is that they need to be computed along with

the fluid flow simulation and cannot be done as a part of the post processing of

data unlike the streamlines.

B.1.7 Velocity vector plots

This is readily obtained for a vortex method since the velocity field is always

computed for any vortex method. The velocity field is simply sampled onto a

rectilinear grid and then visualized using some tool like MayaVi (Ramachandran,

2001).

B.1.8 Surface vorticity distribution

The surface vorticity distribution can be computed as described in section B.1.3

which deals with obtaining forces via pressure and skin friction. This surface

vorticity distribution can be used to compute the steady separation points by

finding where the skin friction goes to zero. Unsteady separation is considerably
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more involved and is not discussed further here.

B.1.9 Pressure distribution

The pressure term is eliminated in vortex methods. However, computing the

pressure on the body surface is useful and is described in section B.1.3. Computing

the pressure at an arbitrary point in the fluid is non-trivial and requires other

techniques. For the purposes of the present work the pressure at an arbitrary

point is not considered.
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