
Python for CFD: A case study

Prabhu Ramachandran ∗

Computers and Fluids Laboratory,

Department of Aerospace Engineering,

IIT-Madras, Chennai, INDIA 600 036

Abstract

In this paper we discuss the benefits obtained by the use of Python in
our CFD computations. Our research involves the development and study
of a high-resolution vortex method. We outline the various Python scripts
that enabled us to do routine tasks, drive CPU intensive simulations from
Python, schedule several hundreds of runs and interactively explore and
analyze the data. We also show how SWIG, Pypar and SciPy’s Weave
enabled the rapid and efficient implementation of an interesting parallel
program.

1 Introduction

Computational Fluid Dynamics (CFD) involves the computational simulation of
fluid flows. We are interested in a class of schemes known as vortex methods
applied to the flow of viscous, incompressible fluids in a two-dimensional domain.
The vortex method is a grid-free method and employs a Lagrangian method of
solution. Computational points are introduced and tracked as the simulation
evolves. The method is challenging and involves a fair amount of computational
effort. In [17] we implement a random vortex method and obtain high-resolution
fluid flow simulations. In this paper we explore how Python enabled many of
the computations presented there. It is of interest to note how Python made
many things easier to manage. In isolation, many of the developed Python scripts
are of no particular interest. However, with respect to the goals of our research
problem, the combination of the various tools developed and used proved to be

∗Graduate Student, prabhu@aero.iitm.ernet.in

1

of immense benefit. Almost all of the number-crunching code was implemented
in C++. However, the runs were scheduled using Python. Much of the analysis,
and management of the data was also done using Python. In this paper we seek
to bring out the following.

• Python makes for an excellent general purpose scripting language suitable
for scientific computations.

• Python often makes routine and boring tasks efficient and fun.

• Through the use of SWIG [1, 2] and SciPy’s[9] weave, it is also possible to
rapidly develop computationally efficient programs. This will be brought
out with a specific example of a parallel application that we developed.

Therefore, Python serves as an extremely powerful tool in the arsenal of any
researcher interested in improving their productivity.

In the following, we first introduce the problem of interest. A very brief in-
troduction to vortex methods is provided. Subsequently, we show how Python
proved useful. Finally, we show how we rapidly developed a non-trivial, efficient,
parallel application using different Python modules.

2 Vortex methods

Computational Fluid Dynamics (CFD) involves the computational simulation of
fluid flow problems. A common approach of simulating complex fluid flows is to
employ the Navier-Stokes (NS) equations. These are non-linear, second order par-
tial differential equations. Solving these equations for general fluid flows requires
the use of numerical schemes. Traditional CFD requires the use of a computa-
tional grid to discretize the physical space. The NS equations are discretized on
this grid and then solved using an appropriate numerical scheme. Generating
the grid for complex geometries can involve considerable effort and sometimes
introduces difficulties in the numerical simulation of the governing equations.

Vortex methods offer a grid-free approach for the computational simulation of
fluid flows. In this work we are concerned with vortex methods for the simulation
of the flow of incompressible, viscous fluid flows in two-dimensional domains.

2.1 Governing equations

Vorticity, ~ω, is defined as the curl of the velocity field, ~ω = curl ~V . Upon taking
the curl of the NS equations, it can be seen that under the assumption of incom-
pressibility, the entire flow is governed in terms of the vorticity alone. For the flow

2

past a body B, in two-dimensions, the governing differential equations along with
the boundary conditions are given by,

∂ω

∂t
+ ~V · grad ω = ν∇2ω, (Vorticity transport) (1a)

ω = curl ~V · k̂, (Vorticity) (1b)

div ~V = 0, (Mass conservation) (1c)

ω(~r, 0) = ω0(~r), (Initial condition) (1d)

~V (~r, t) = 0 as ~r →∞, (Infinity BC) (1e)

~V (~r, t) · ên = ~VB · ên on B, (No-penetration BC) (1f)

~V (~r, t) · ês = ~VB · ês on B, (No-slip BC) (1g)

where ên and ês are the normal and tangential unit vectors on B and k̂ is the unit
vector out of the plane of the flow.

Given the vorticity field, ω(~r, t) the velocity field satisfying the boundary con-
ditions in equation (1f) and (1g) is to be found. Using this velocity field, the
governing equation can be solved.

In the context of vortex methods, during each time-step, ∆t, equation (1a) is
solved in two steps.

Dω

Dt
= 0, (Advection) (2a)

∂ω

∂t
= ν∇2ω. (Diffusion) (2b)

Equation (2a) is the advection equation. The advection equation implies that
vorticity remains constant along a particle path. Equation (2b) is the diffusion
equation.

In a vortex method, the vorticity field is first discretized into individual parti-
cles of vorticity called vortex blobs,

ω(~x) =
N∑

j=0

fδ(~x− ~xj)ωjh
2, (3)

where fδ is a core or cutoff function (an approximation to the Dirac distribution),
δ is a parameter called the core or cutoff radius, h is the grid spacing used for the
initial discretization1, N is the number of particles and ~xj, ωj are the position and
vorticity respectively of the j’th vortex blob.

1Note that this is only an initial discretization of the vorticity field and is not a fixed grid.

3

Given a vorticity field, ω(~x, t), the velocity field, ~Vω can be obtained as,

~Vω(~x, t) =
N∑

j=0

Kδ(~x− ~xj)Γj. (4)

Kδ is called a desingularized velocity kernel and is given as,

Kδ = K ∗ fδ. (5)

where ∗ denotes convolution and

K(x, y) =
(−y, x)

2πr2
, (6)

where r2 = x2 + y2.
Thus, the velocity field corresponding to a given vorticity field can be obtained

depending on the nature of the discretization of the vorticity. Given a compact
vorticity distribution or one that decays rapidly, the velocity field, ~Vω will sat-
isfy the infinity boundary condition (eq. (1e)). In general, it will not satisfy the
no-penetration and no-slip boundary conditions (eqs. (1f) and (1g)). The no-
penetration boundary condition is satisfied by adding a suitable potential velocity
field to ~Vω. The no-slip boundary condition is satisfied by introducing vorticity
along the surface of the body in a suitable manner.

Thus, given the vorticity field and the velocity field, the particles discretizing
the vorticity can be convected by solving an ODE.

The diffusion equation can be solved in one of many ways suitable to parti-
cle methods. In the present work we use the random vortex method [5, 6]. In
this method diffusion is simulated by making the individual vortex blobs undergo
independent random walks with the displacement obtained from a Gaussian dis-
tribution having zero mean and variance 2ν∆t. Since the method is stochastic,
the solution is noisy and some amount of averaging (ensemble, space or time av-
eraging) is necessary to obtain smooth solutions.

More theoretical details along with a large number of references on vortex
methods are available in a book by Cottet and Koumoutsakos [7]. Puckett [15]
provides several details on the random vortex method employed in our work.

2.2 Numerical details

Algorithmically the vortex method usually proceeds in the following manner.

1. The slip velocity on the bounding solid surfaces is computed at a set of
control points on the boundary.

4

2. The existing vortex particles are advected using an appropriate ODE inte-
gration scheme (usually a second order Runge-Kutta scheme is used).

3. Vortex particles are added just above the surface of the body to offset the
slip velocity computed in step 1.

4. The vortex particles are diffused using the random vortex method.

5. The process repeats from step 1.

Thus, the computational method is physically intuitive. However, there are
several computational challenges involved in the vortex method. The most im-
portant of these involves the efficient computation of the velocity field using an
adaptive fast multipole method [4]. More details on these algorithms along with
other algorithms used in vortex methods are discussed in [17].

3 Python for vortex methods

In the previous section we briefly discussed the mathematical details of vortex
methods and also illustrated the general approach of the method. Implementing
a vortex method is fairly challenging due to the complexity of the algorithms.
High-resolution computations are also computationally expensive. Thus all the
computationally intensive code developed has been written in C++. The library
developed is called VEBTIFS (Vortex Element Based Two-Dimensional Incom-
pressible Flow Solver). While the code is fairly efficient, it is a lot more convenient
to use the library from a scripting language like Python.

Unlike many other scripting languages (save perhaps Lush [3]), Python is well
suited to numerical computation. The existence of tools for numerical analysis,
along with a powerful interactive interpreter make Python ideal for scientific com-
puting. Thus we chose to use Python as our scripting language.

3.1 Building the library

We build and run our code on a cluster of Pentium r©IV machines running Debian
GNU/Linux. Initially we used GNU/Make to manage the builds. There are several
different configurations of the library. The library has some rudimentary graphics
support, using the Ygl [8] graphics library, that can be optionally turned on. We
also needed to build debug, release and profiled versions of the library. Finally,
we needed to build both shared and static libraries. While this was possible
with makefiles, it required quite a bit of effort to get working. At this point we
switched to using SCons [10] for the build. This was primarily because SCons
build scripts are Python scripts, SCons handled dependencies very well, supports

5

parallel builds from the ground up and also handled multiple variants of the builds
in a straightforward manner. The initial build system used over 20 makefiles with
around 1000 lines of code (without support for shared libraries). The code was also
not easy to read. Switching to SCons reduced this to two files with just 200 lines
of code (with support for shared libraries). The SCons build scripts were Python
scripts and as such were much easier to understand than the original makefiles.
They were also powerful enough to handle all of the complications of our builds.

SCons supports parallel builds much better than make. In combination with
distcc [14], SCons reduced compile times almost linearly with an increase in the
number of computers on the network. Using distcc itself required very little mod-
ifications to the scripts. Thus, switching to SCons proved to be a very significant
benefit.

3.2 Parsing text data files

Very often one needs to parse a simple text data file. In our work we found that
commented text files were extremely useful. A simple commented text file is of
the following form,

key = value # comment

or

key1, key2 = value1, value2 (garbage text/doc string)

or just

value1, value2

The keys, comments and garbage text/documentation strings are irrelevant and
are just used for convenience. The values are alone of significance. It is easy to
see that this type of file is both useful and commonly found. Most often the user
is aware of the file format, i.e. what is to be expected in the file. Therefore, we
required a simple parser that would allow us to obtain, in sequence, a particular
value (an integer, float or string or alpha-numeric value) from the file.

A typical use case would be as shown below

p = DataParser()

p.parse_file(’test.dat’)

v = p.get_float()

a = p.get_float()

n = p.get_int()

for i in range(2):

x, y = p.get_float(), p.get_float()

For example, when parsing for a float, all strings and comments are ignored until
the float is found. Thus the text file is easily understood by a user and parsed by

6

code. Using XML for this seemed like overkill. Besides, it is clear that a lot of
common data files are structured this way. For example, a data file that is plotted
with gnuplot would be parse-able with our code, and not with an XML reader.

The data parser interface is listed in listing 1 The code for this class can be ob-

Listing 1 The DataParser interface

class DataParser:
def parse file (self , file):

pass
def get float (self):

pass
def get int (self):

pass
def get string (self):

pass
def get alpha(self):

pass
def get alnum(self):

pass

tained from http://www.ae.iitm.ac.in/ prabhu/software/code/python/dp.py. This
module is not efficient but works well and is remarkably useful.

3.3 Conversion of data formats and versioning

As our code evolved, the input and output file formats kept changing. We had
data files in either ASCII or XDR formats. In addition, the files could also be
optionally zipped. The main program that would perform the simulation would
always use the latest data format. However, it was important to be able to change
the data format from older data files. Further, manual inspection of data stored in
the XDR format required conversion to ASCII. The file format itself was involved.
Writing a converter in C++ to handle the four possible file types and the various
versions of the data was quite out of the question. Getting XDR I/O support in
VEBTIFS (in C++) involved a few days of effort. A shell scripting language (like
bash) could not be used either since the task was too complex. Python was an
obvious choice. The fact that the Python standard library had support for XDR
(using the xdrlib module) was a big plus. Getting a basic converter working took
a few hours of work. With a little more work, the code supported both XDR
and ASCII I/O, supported zipped files, allowed one to read and write different
formats and had a useful command line interface. The ASCII reader used the

7

http://www.ae.iitm.ac.in/~prabhu/software/code/python/dp.py�

data file parser discussed in section 3.2. The code was fun to write and much of
the debugging was done on the interpreter. The final code was around 800 lines
long.

An interface defining an abstract reader and writer is used for the I/O. Any
object that writes and reads data derives from an abstract base class called Thing

which stores a list indicating the type of the data elements the object will contain.
Another list stores the actual data. A comment string is also stored and this is
used to write out comments in the ASCII text output. The Thing class also has
read and write methods that read and write the data using the format list and
the data list. For each class in VEBTIFS that involves I/O, a class derived from
Thing is created and handles changing of the versions. The read/write methods
are overridden if necessary. This is a duplication of effort since the basic data
format is implemented in two places (in VEBTIFS and in the converter written in
Python). However, VEBTIFS only handles the latest version of the data format
and it is quite easy to write code in Python to handle the changes. Thus, Python
made the file converter possible. This allowed us to change the file formats more
freely. Additionally, the code gave us the ability to read and inspect the data on
an interpreter session.

3.4 A job scheduler

As discussed in section 2.1, the method of random walks is used to simulate
diffusion of the vorticity. The method is stochastic and requires some amount of
ensemble averaging for accurate results. While this requires more computational
effort, the computations are also trivially parallelizable. The trouble is that several
runs need to be made. In [17], we made close to 1000 runs in the span of a few
months. The run-time for each computation would vary from anywhere near half-
an-hour to twenty four. Our lab had a cluster of nine computers. A few of the
machines were desktops, some were servers and most of the others were compute-
servers. Many of the machines were being used by others for other tasks. Given
these constraints we had to schedule almost 1000 individual runs which would
take a long time to execute. Manually running these jobs was inefficient and error
prone.

We decided to write a job scheduler to handle the task. The task was quite
simple but once again something not easily achievable by writing a program in
either C/C++ or using a shell script. Once again, Python was up to the task.
What was required of the program was the following.

• Given a maximum load-level, run a job (specified as the full path to an
executable program/script).

• If a submitted job cannot be run immediately, queue it.

8

• Allow the user to add and remove jobs in the queue.

• Allow the user to change the load-level and also the polling interval.

• Save a log of all the jobs run to date.

Since all the machines were running Linux, no cross-platform support was
necessary. This simplified the task. Writing the code for the scheduler took about
one day’s work. The script had a complete command line interface, worked as a
daemon and supported all we required. The program required about 500 lines of
code.

In order to compute the current load level on a machine the the output of the
uptime command is parsed. Similarly the output of the ps command is parsed to
find the status of the running process based on its PID. The job is spawned using
os.spawnl and the job’s PID is the return value of the command. A JobD class
manages the queue, the jobs and the history. A simplified view of the interface is
shown in listing 2. Adding a job simply adds an entry into the queue in a host
specific data file (this eliminates problems with NFS home directories). Every
few minutes the daemon polls the queue and processes it. If the load level is
acceptable it runs the first job in the queue. For each running job it checks (using
the ps command) to see if the job is still running. If the job has terminated it
makes an entry in the history (stored in the same file as the queue) along with
the approximate start and stop time of the job.

The code was fun to write. Using this job daemon eased the task of making
hundreds of runs efficiently.

In order to compute the ensemble average, several runs were necessary. This
was done by using a different random number seed for each of the runs. This
process was also automated using Python scripts. An input file determining the
various parameters (including the random number generator’s seed) is parsed.
This information along with the number of different runs to be made was used
to generate different input files for the runs along with the modified seed values.
These files were placed in different directories. Once the files were generated,
another file specifying a mapping between the directory and the machine where
the files were to be transported and run was parsed. The data was then copied to
all the relevant machines using the commands module from the standard library.
The jobs were then scheduled on each of the target machines. Once the runs were
all completed, the same script would be responsible to get back the data from the
different machines. The launching of the runs and collection of the data were all
done on interactive Python sessions using the enhanced interactive Python shell,
IPython [12, 13]. Many of these features are part of freely available tools used to
manage clusters. However, in our case there was a paucity of time to install and
get these tools installed and running. A few days of Python coding achieved all we

9

Listing 2 The Job Scheduler interface

class JobD:
def isServing(self):

”””Check if server is alive .”””

def run(self):
”””Process the queue and running jobs.”””

def start(self):
”””Start the server in daemon mode. Ideally the function
never returns . Only one server per machine is allowed. If a
server is already running this call returns.”””

def kill (self):
”””Kill the server .”””

def restart (self):
”””Restart the server after killing the running server . ”””

def add(self , job):
”””Add a new job to the queue. The submitted job must be an
executable file with full path or path implicit to the servers
current working directory . Full path is preferred .”””

def remove(self , job):
”””Remove an existing job from queue.”””

def status(self , verbose=0):
”””Print status of server .”””

def history(self):
”””Print history of jobs run on server.”””

10

wanted. Our scripts were simple and could also be used on other Linux clusters
where we were unable to install new software easily.

Therefore, by using these Python scripts, it was possible to run several hun-
dreds of simulations on different machines and also manage the data generated by
these runs.

3.5 Driving C++ code using SWIG

It is extremely convenient to be able to drive simulations from an interactive
and interpreted environment. The C++ code implementing the vortex method
consisted of around 80 classes in over 35000 lines of code. These were wrapped
to Python using SWIG[1, 2]. This required writing about 500 lines worth of
SWIG interface files. SWIG handles bulk of the wrapper generation. Writing the
interface files and getting everything working satisfactorily took around a week’s
work2. SCons was used to build the wrappers.

Once the SWIG wrappers were generated it became possible to write Python
scripts to make runs, graphically inspect the data and do a host of other things.
One such helper script allows us to view the data interactively, generate vorticity
contours, streamlines and compute the velocity on points specified. This is used
to compare our results with those of other researchers.

3.6 Data analysis

In order to analyze the data from our simulations we used the Python interpreter.
We used IPython [12, 13] for this purpose.

Common tasks are abstracted into useful functions or classes that can be reused
several times. Data from different simulations can be ensembled using a Python
script. The script reads the output from the different runs and ensembles them
and stores these results in a separate directory. The mean and standard deviation
for various quantities are also easily computed using the data. The data parser is
used to parse text files and Numeric is used for the computations.

Some of the data requires special processing. Due to the stochastic nature of
the simulation some of the output can be noisy, these are processed using either
simple averaging techniques (using the Numeric module) or more sophisticated
schemes like fitting a piecewise polynomial to the data. For these purposes the
various modules provided by SciPy [9] are used. Specifically, the optimize and
interpolate modules are used.

Two-dimensional line plots are generated using Grace [18] and the grace-
Plot module (available here). For more sophisticated 2D and 3D visualization,
MayaVi [16] is used.

2This includes reading the SWIG documentation and experimenting with SWIG.

11

http://www.idyll.org/~n8gray/code/�

4 Building a parallel application

The previous section demonstrated how Python proved useful in various ways.
We use Python to build our code, schedule hundreds of runs, manage data and
analyze data interactively.

In this section we demonstrate how we used Python to build an efficient par-
allel program. Given a cluster of processors (Pentium r©IV machines running at
1.7GHz), the program performs computations for several time steps on each pro-
cessor. Every nsync time steps the data from each of the processors is assembled
on one of the processors called the master processor. The data is then processed
on the master and sent back to the slave processors. The processors resume their
work from this point. Bulk of the time is spent in performing the computations
on each processor. However, large quantities of data are transferred. The entire
simulation could take anywhere between 4-24 hours.

For one particular run, the average time taken per iteration on an individual
processor was 1 minute and the communication occurred every 10 iterations. On
the average, each processor communicated about 3MB of data to the master pro-
cessor and the master in turn communicated the same amount back to all the
processors.

Since the program was embarrassingly parallel, we decided to try and imple-
ment it in Python. The salient features of the program we implemented are the
following.

1. The computations on individual processors are run using the SWIG wrapped
version of the VEBTIFS library.

2. The communication of the data is done using Pypar [11]. Numeric arrays of
the data are communicated.

3. The data for communication is obtained from from various vortex particles
(sometimes running into a quarter of a million particles on each processor),
stored in Numeric arrays and transferred using Pypar. This data is then
converted back into particle data on the master, processed at the C++ level,
transformed back into a Numeric array and sent back to the slave processors.

Step 3 in the above is the most time-consuming, if the problem is to be solved
in Python. However, at this point, we only had an idea of what we needed to do
and no concrete information on how best to do things. Consequently, prototyping
the idea in Python seemed like a good idea. Performance could be addressed later.
The basic program was written in half a day. Debugging and getting everything
working correctly took the rest of the day. The outline of the main class developed
for the program is given in listing 3.

12

Listing 3 The parallel program interface

class Solver:
def initialize (self , inp):

””” Initializes solver from an input file .”””
...

def iterate (self):
””” Performs self .n sync iterations of the solver .”””
...

def readData(self , id):
”””Read data from the processor having ID, id.”””
...

def sendData(self, id):
”””Send data to the processor having ID, id.”””
...

def processData(self):
...

def master(self):
while self . fs .getCurrentTime() < self.stop time:

self . iterate ()
for i in range(1, self .n proc):

self .readData(i)
self .processData()
for i in range(1, self .n proc):

self .sendData(i)

def slave(self):
while self . fs .getCurrentTime() < self.stop time:

self . iterate ()
self .sendData(0) # send data to master
self .readData(0) # get back processed data from master

def run(self):
if self . id == 0:

self .master()
else:

self . slave ()

13

Pypar initializes the MPI library on import. In this case LAM version 6.5.6 was
used. The rest of the code is mostly straightforward. Each slave processor manages
hundreds of thousands of particles (vortex blobs actually). The master processor
also has its own set. After completing the computations, the slave processor needs
to send back the master processor all of its particles. The master reads these
from each processor and then processes them. It then sends the data back to each
processor. The blobs on each processor are stored inside a BlobManager object.
This is part of the VEBTIFS library and is wrapped to Python using SWIG. Pypar
lets one receive and send Numeric arrays. Thus, the data inside the BlobManager

object needs to be converted into a Numeric array. Similarly when reading data
from the master processor, the data in the form of Numeric arrays needs to be
converted back into Blob objects stored in a BlobManager. Doing this in Python
is very slow. In listing 4, one example of a typical function used to convert data
from numeric arrays to blobs is shown. The function data2Blob_slow is the way
the function was first implemented. Needless to say, the implementation was very
slow. However, it worked and was useful to get the code working correctly. In order
to accelerate these function we resorted to using SciPy’s weave module. Python
wrappers for the C++ library, VEBTIFS, are made using the latest development
of SWIG (version 1.3.22) called SWIG2. Unfortunately, weave did not support
SWIG2 wrapped objects. In a day’s (night actually) effort we were able to add
SWIG2 support to weave 3. The equivalent code with weave is shown in the
function data2Blob in listing 4. As seen the code is easy to read and quite similar
to the Python version. Using weave resulted in a 300-400 fold speedup!

The final version of the code is 570 lines long. It has a useful command line
interface (7 different options), supports some primitive graphics 4 and is efficient.
The overall performance of the code was excellent. Developing the code took
about 3 days of work from concept to a working version. This includes the time
spent on adding SWIG2 support for weave. The resulting code helped us pro-
duce simulations of unprecedented resolution [17] for the flow past an impulsively
started circular cylinder using the random vortex method.

5 Conclusions

We have demonstrated here that Python is extremely well suited for scientific
computations for several reasons.

• It is easy to learn and very versatile. The language is well designed and lets
one focus on the problem at hand.

3This is available in weave from CVS.
4The graphical output is part of VEBTIFS. The important thing is that the output of all the

processors can be graphically inspected.

14

Listing 4 Inter-conversion of data

def data2Blob slow(blb data, bm):
””” Given numeric arrays containing blob data and a BlobManager,
populate the BlobManager with blobs.”””

z , gam, core = blb data[’z’], blb data[’strength’], \
blb data[’core’]

bf = vebtifs .BlobFactory()
for i in xrange(len(z)):

bm.addElement(bf.create(z[i], gam[i], core[i]))

def data2Blob(blb data, bm):
z , gam, core = blb data[’z’], blb data[’strength’], \

blb data[’core’]
nb = len(z)
bf = vebtifs .BlobFactory()
code = ”””
for (long i=0; i<nb; ++i) {

bm−>addElement(bf−>create(z[i], gam[i], core[i]));
}
”””
weave.inline(code , [’bm’, ’bf ’ , ’z’ , ’gam’, ’core’ , ’nb’],

headers=[’”blob.H”’])

15

• The standard library along with other open source modules make Python
extremely powerful.

• It is relatively easy to interface to C/C++ or Fortran libraries.

• Thanks to its excellent interactive interpreter (via IPython) and modules like
Numeric/numarray, SciPy, gracePlot etc., Python is well suited to perform
interactive numerical analysis and exploration of data.

• With packages like weave it is possible to build highly efficient Python mod-
ules relatively easily.

As demonstrated, non-trivial parallel applications can also be developed very
rapidly using Python. Thus, it is clear that Python as a programming language is
an excellent tool in the armory of any scientist or engineer. It would be of immense
benefit to anyone pursuing serious computational work to be familiar with a high-
performance language like C/C++ or Fortran and Python. As demonstrated in
this paper, with the knowledge of both C/C++ and Python the possibilities are
immense.

6 Acknowledgements

I gratefully acknowledge the encouragement and guidance of my advisors, Profes-
sors S. C. Rajan and M. Ramakrishna of the Department of Aerospace Engineer-
ing, IIT-Madras.

References

[1] David Beazley et al. SWIG: Simplified wrapper and interface generator, 1995–
. URL http://www.swig.org.

[2] David M. Beazley. SWIG : An easy to use tool for integrating scripting
languages with C and C++. Presented at the 4th Annual Tcl/Tk Workshop,
Monterey, CA, July 1996.

[3] Leon Bottou, Yann LeCun, et al. The lush programming language, 2002–.
URL http://lush.sf.net.

[4] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm
for particle simulations. SIAM J. Sci. Stat. Comput., 9(4):669–686, 1988.

[5] A. J. Chorin. Numerical study of slightly viscous flow. Journal of Fluid
Mechanics, 57(4):785–796, 1973.

16

http://www.swig.org�
http://lush.sf.net�

[6] A. J. Chorin. Vortex sheet approximation of boundary layers. Journal of
Computational Physics, 27(3):428–442, 1978.

[7] G.-H. Cottet and P. Koumoutsakos. Vortex methods: theory and practice.
Cambridge University Press, March 2000.

[8] Fred Hucht. The Ygl graphics library, 1993–. URL http://www.thp.

uni-duisburg.de/Ygl/.

[9] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. URL http://www.scipy.org/.

[10] Steven Knight et al. SCons: A software construction tool, 2001–. URL
http://www.scons.org.

[11] Ole M. Nielsen. Pypar: parallel programming in the spirit of Python, 2001–.
URL http://datamining.anu.edu.au/~ole/pypar/.

[12] Fernando Pérez. IPython: an enhanced interactive Python. In SciPy’03 –
Python for Scientific Computing Workshop, CalTech, Pasadena, CA, USA,
September 11th.–12th. 2003.

[13] Fernando Pérez et al. IPython: an enhanced interactive Python shell, 2001–.
URL http://ipython.scipy.org.

[14] Martin Pool et al. Distcc: a fast, free distributed c/c++ compiler, 2002–.
URL http://distcc.samba.org.

[15] E. G. Puckett. Vortex methods: An introduction and survey of selected
research topics. In R. A. Nicolaides and M. D. Gunzburger, editors, Incom-
pressible Computational Fluid Dynamics — Trends and Advances, page 335.
Cambridge University Press, 1991.

[16] Prabhu Ramachandran. MayaVi: A free tool for CFD data visualization.
In 4th Annual CFD Symposium. Aeronautical Society of India, August 2001.
Software available at: http://mayavi.sf.net.

[17] Prabhu Ramachandran. Development and study of a high-resolution two-
dimensional random vortex method. PhD thesis, Department of Aerospace
Engineering, IIT-Madras, 2004.

[18] Paul J Turner, Evgeny Stambulchik, et al. Grace: a 2d plotting tool, 1998–.
URL http://plasma-gate.weizmann.ac.il/Grace/.

17

http://www.thp.uni-duisburg.de/Ygl/�
http://www.thp.uni-duisburg.de/Ygl/�
http://www.scipy.org/�
http://www.scons.org�
http://datamining.anu.edu.au/~ole/pypar/�
http://ipython.scipy.org�
http://distcc.samba.org�
http://plasma-gate.weizmann.ac.il/Grace/�

